SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE FAKULTA ELEKTROTECHNIKY A INFORMATIKY

Evidenčné číslo: FEI-184492-104027

Etalón napätia 10 V

Diplomová práca

Bc. Dávid Hrušovský

SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE Fakulta elektrotechniky a informatiky

Evidenčné číslo: FEI-184492-104027

Etalón napätia 10 V Diplomová práca

. .

Študijný program:	Aplikovaná elektrotechnika
Študijný odbor:	Elektrotechnika
Školiace pracovisko:	Ústav elektrotechniky FEI STU
Vedúci práce:	doc. Ing. Daniel Valúch, PhD.

Bratislava 2024

Bc. Dávid Hrušovský

Slovenská technická univerzita v Bratislave Ústav elektrotechniky

ZADANIE DIPLOMOVEJ PRÁCE

Študent:	Bc. Dávid Hrušovský			
ID študenta:	104027			
Študijný program:	aplikovaná elektrotechnika			
Študijný odbor:	elektrotechnika			
Vedúci práce:	doc. Ing. Daniel Valúch, PhD.			
Vedúci pracoviska:	prof. Ing. René Harťanský, PhD.			

Názov práce: Etalón napätia 10 V

Jazyk, v ktorom sa práca vypracuje: slovenský jazyk

Špecifikácia zadania:

Diplomová práca sa zaoberá návrhom a realizáciou etalónu napätia pre Ústav elektrotechniky. Úlohou diplomanta je s použitím moderných polovodičových referencií (napr. LTZ1000, ADR1000, ADR1399) navrhnúť a zrealizovať etalón napätia 10,000 000 V. Pre dosiahnutie dlhodobej stability musí byť etalón nepretržite zapnutý a udržovaný na konštantnej teplote. Súčasťou návrhu je termostat a nezávislé batériové napájanie. Cieľom je dosiahnuť metrologickú kvalitu výstupného napätia a dlhodobú stabilitu lepšiu ako 5 uV/V za rok.

Termín odovzdania diplomovej práce:	10. 05. 2024
Dátum schválenia zadania diplomovej práce:	05. 02. 2024
Zadanie diplomovej práce schválil:	prof. Ing. René Harťanský, PhD. – garant študijného programu

Čestné prehlásenie

Čestne prehlasujem, že som celú diplomovú prácu "Etalón napätia 10 V" vypracoval samostatne pod vedením vedúceho záverečnej práce na základe poznatkov, ktoré som nadobudol počas štúdia a s použitím odbornej literatúry a zdrojov, ktoré sú uvedené v zozname použitej literatúry.

V Bratislave, dňa 10. 5. 2024

.....

Bc. Dávid Hrušovský

Poďakovanie

Z tohto miesta by som sa chcel poďakovať vedúcemu záverečnej práce docentovi Danielovi Valúchovi, za pomoc vo všetkých aspektoch práce a poskytnutie enormného množstva informácií a zdrojov. Som rád hlavne za príležitosť sledovať ho pri práci, vďaka čomu som si vypracoval množstvo návykov, ktoré by mal ovládať každý dobrý inžinier. Osobitná vďaka patrí študijnému kolegovi Martinovi Práznovskému, s ktorým počas celého štúdia konzultujeme témy a problémy z oblasti elektrotechniky a ktorý výraznou časťou prispel k vyhotoveniu tejto práce. Ďalej by som chcel poďakovať inžinierom zo špičkových inštitúcií, ktorí mi boli priamo či nepriamo nápomocní pri realizácii diplomovej práce. Menovite Samuel Kacej (CERN/FEI), Jaromír Sukuba (DMI), Marián Hubinský (ELSO) a celý kolektív Slovenskej legálnej metrológie. Pri vyjadrení vďaky nesmiem opomenúť ani zamestnancov ústavu elektrotechniky, ktorí mi okrem pomoci pri záverečnej práci sprostredkovali vzdelanie počas štúdia. V neposlednom rade patrí vďaka mojej rodine, priateľke a blízkym za ústretovosť a pochopenie počas trvania celého môjho štúdia na fakulte.

Abstrakt

Slovenská technická univerzita v Bratislave FAKULTA ELEKTROTECHNIKY A INFORMATIKY

Študijný program: Aplikovaná elektrotechnika

Autor: Bc. Dávid Hrušovský Názov záverečnej práce: Etalón napätia 10 V Vedúci záverečnej práce: doc. Ing. Daniel Valúch, PhD. Mesiac a rok odovzdania: 05, 2024

Laboratórne etalóny napätia sa používajú na prenos a udržiavanie voltu v rámci lokálnych laboratórií, pričom sú vztiahnuté k nadradeným zariadeniam akým je napríklad Josephsonov etalón napätia. Diplomová práca sa venuje návrhu a realizácii laboratórneho etalónu napätia s použitím čipu ADR1000, ktorý je založený na princípe "Buried Zener diode". V úvodných kapitolách práca oboznámi čitateľa so základnou problematikou zdrojov presného a známeho napätia, a základnými pojmami elektrickej metrológie, ktoré sú dôležité pre pochopenie ďalšieho obsahu opisujúceho návrh, realizáciu a testovanie dosiahnutých výsledkov. Výsledné zariadenie bude využívané na kalibráciu zariadení v rámci ústavu elektrotechniky FEI STU v Bratislave.

Kľúčové slová: Zenerova dióda, ADR1000, Etalón napätia, Metrológia elektrických veličín

Abstract

Slovak University of Technology in Bratislava FACULTY OF ELECTRICAL ENGINEERING AND INFORMATION TECHNOLOGY

Study Programme: Applied Electrical Engineering

Author: Bc. Dávid Hrušovský Title of the final thesis: Voltage standard 10 V Supervisor: doc. Ing. Daniel Valúch, PhD. Date of the submission: 05, 2024

Laboratory voltage standards are used to maintain and distribute the volt within local laboratories, while being referenced to higher standards such as the Josephson voltage standard. The masters thesis is dedicated to the design and implementation of laboratory voltage standard using the ADR1000 voltage reference chip, which is based on buried zener diode technology. In the openning chapters, the work introduces the reader to the basic concepts and priciples, which is important for understanding the further content describing the design, implementation and testing of the achieved results. Resulting device will be used for equipment calibration at the Institute of Electrical Engineering FEI STU in Bratislava.

Keywords: Zener diode, ADR1000, DC voltage standard, metrology of electrical quantities

Obsah

Ú١	vod			1		
1	Zdr	oje nap	vätia presnej a známej hodnoty	2		
	1.1	Prakti	cká realizácia etalónu a referencií napätia	3		
		1.1.1	Dôležité parametre referencií napätia	4		
		1.1.2	Elektrochemický článok	4		
		1.1.3	Polovodičové referencie	5		
		1.1.4	Etalón napätia využívajúci Josephsonov jav	11		
		1.1.5	Tvorba, udržiavanie a prenos referenčných štandardov	14		
	1.2	Porovr	nanie laboratórnych etalónov napätia	17		
2	Štat	tistické	metódy v metrológii	19		
	2.1	Smero	dajná odchýlka	19		
	2.2	Allano	va odchýlka	19		
	2.3	Chyby	a Neistoty merania	21		
3	Špe	cifikáci	e zariadenia	24		
4	Rea	lizácia		25		
	4.1	Možno	osti realizácie a výsledná koncepcia	25		
	4.2	Referencia ADR1000				
		4.2.1	Prispôsobenie výstupného napätia na presné dekadické hodnoty	34		
	4.3	Stabili	zácia teploty	41		
		4.3.1	Vyhrievanie termostatu	42		
		4.3.2	Meranie teploty	44		
		4.3.3	Riadenie teploty vyhrievacej krabičky	47		
	4.4	Napája	anie Etalónu	50		
		4.4.1	Nabíjanie batérii a obsluha záťaže	51		
		4.4.2	Transformácia napájacieho napätia	54		
		4.4.3	Backplane konektor	56		
		4.4.4	Regulácia napätí	56		
	4.5	Aspekt	ty návrhu dosiek plošných spojov a mechanická integrácia	59		

5	Rea	lizácia prvého prototypu a výsledky testovania		65
	5.1	Presluch cez spoločnú (zemnú) impedanciu		65
	5.2	Problémy s prispôsobením výstupného napätia		68
	5.3	Preťaženie Protitaktných DC-DC meničov		69
	5.4	Únikový prúd		69
	5.5	Odstránenie nedostatkov		71
	5.6	Osadenie a prvé zapnutie finálnej verzie etalónu na FEI		72
6	Met	rologická charakterizácia etalónu		80
	6.1	Časová stabilita		80
	6.2	Teplotná stabilita		82
	6.3	Stabilita výstupného napätia v porovnaní s Fluke 732C-S		85
	6.4	Opakovateľnosť výstupného napätia po teplotnom cykle		88
	6.5	Šum		89
	6.6	Kalibrácia absolútnej hodnoty napätia etalónu		92
Zá	ver			97
Zo	znan	n použitej literatúry		101
Pr	íloha	č.1 - Výrobné podklady dosky referencie		I
Pr	íloha	č.2 - Výrobné podklady dosky napájania		XII
Pr	íloha	č.3 - Výrobné podklady vyhrievacej krabičky		xx
Pr	íloha	č.4 - Program mikrokontroléra	x	ĸıv
Pr	íloha	č.5 - Kalibračný protokol použitého etalónu Fluke 732C-S	XX۱	/111

Zoznam obrázkov

1	Typická hierarchia etalónov fyzikálnej veličiny.	3
2	Jednoduché zapojenie Zenerovej diódy ako referenčného obvodu	6
3	Volt-Ampérova charakteristika Zenerovej diódy so znázornenou hranicou Ze-	
	nerovho prierazu Uz v závernom smere. Na obrázku tiež môžeme vidieť že pri	
	zmene teploty T (znázornené ako T1, T2 a T3) dochádza k posunutiu hranice	
	Zenerovho prierazu.	7
4	Zapojenie a dlhodobá stabilita integrovaného referenčného obvodu LTZ1000	
	využívajúceho zenerovu diódu [1]	8
5	Principiálne zapojenie bandgap referenčného obvodu [2]	9
6	Zjednodušené zapojenie zo série XFET refererencií ADR44x od spoločnosti	
	Analog Devices [3].	9
7	Zjednodušená architektúra FET tranzistora obsahujúceho plávajúce hradlo s	
	inektovaným nábojom (červené +)	10
8	Konštantné napäťové kroky volt-ampérovej charakteristiky Josephsonových pre-	
	chodov [4]	12
9	Graf napätia voči frekvencii porovnávajúci JAWS a PJVS. Modrá prerušovaná	
	čiara reprezentuje možný budúci vývoj pre JAWS zatiaľ čo oranžová prerušovaná	
	čiara označuje limit RMS napätia pre PJVS [5]	14
10	Realizácia Josephsonovho sériového poľa JAWS (vľavo) a PJVS (vpravo) [5].	14
11	Diagram reprezentujúci definíciu a udržiavanie etalónov napätia [6] (Chapter	
	6, pg.:6-7, Figure 6-1)	15
12	Etalón napätia v METAS, Bern, Švajčiarsko. Foto kredit D. Valúch	16
13	Pole Zenerových referencií naviazaných na primárny etalón (Josephsonove pole)	
	v METAS, Bern, Švajčiarsko. Foto kredit D. Valúch	17
14	Príklad funkcie na ktorú aplikujeme výpočet Allanovho rozptylu [7]	20
15	Príklad Allanovej odchýlky systému, u ktorého sa uplatňuje $1/{ m f}$ šum, biely šum	
	a časový dift (obe osi sú v logaritmickej mierke) [7]	21
16	Normálne rozdelenie (Gaussova krivka)	22
17	Bloková schéma napájacej časti etalónu.	25
18	Bloková schéma referenčnej časti etalónu	26
19	Zjednodušená vnútorná schéma referencie ADR1000 [8]	28

20	Zapojenie ADR1000 z dátového listu spolu s obvodmi, ktoré slúžia na nasta-	
	venie parametrov akými sú teplota vyhrievania a prevádzkový prúd zenerovej	
	diódy [8]	28
21	Porovnanie šumu ADR1000 a LTZ1000 pri rôznych úrovniach záťaže bez za-	
	pnutého vyhrievania [8]	30
22	Zobrazenie dlhodobej stability štyroch vzoriek ARD1000 pri teplote okolia $25^{\circ}\mathrm{C}$	
	a nastavenej teplote vyhrievania čipu $75^{\rm o}{\rm C}$ [8] $\ .$	31
23	Vnútorná štruktúra ADR1000. HTR $+$ a HTR- sú pripojené na vodiče kruhového	
	tvaru, ktoré obklopujú ostatné časti referencie a zabezpečujú tak rovnomerné	
	rozloženie teploty na čipe. Na ostrove v strede sa nachádzajú jednotlivé PN	
	prechody tranzistorov a Zenerova dióda, z ktorých sú následne vyvedené vodiče	
	na piny (Zdroj: www.richis-lab.de)	32
24	Zapojenie referencie ADR1000 pre etalón napätia $10\mathrm{V}$. V obrázku sú vyznačené	
	aj jednotlivé časti obvodu podľa ich funkcie, ktorá bola popísaná v predchádza-	
	júcej kapitole.	33
25	Schéma prispôsobenia výstupných napätí	35
26	Obvod pre prispôsobenie napätia na úroveň $10\mathrm{V.}$	36
27	Unipolárne zapojenie ČA prevodníka LTC1597 z dátového listu [9]	37
28	Realizácia Hamonovho deliča napätia 1:10 pre výstup 1,000 000 V	39
29	Rezistorová sieť NOMCA v SMT púzdre, vrátane zobrazenia vnútornej topológie.	40
30	Architektúra termostatu	42
31	Napätím riadený prúdový zdroj	43
32	Kompletná schéma obvodu vyhrievania hliníkovej krabičky	43
33	Zapojenie Wheatstonovho mostíka	45
34	Graf závislosti teploty od výstupného napätia mostíka ΔV pre hodnotu odporu	
	rezistorov $R_1 = R_2 = 5, 1k\Omega$.	46
35	Schéma obvodu pre meranie teploty termostatovanej krabičky	46
36	Principiálna schéma PI regulátora	47
37	Skoková odozva systému.	48
38	Algoritmus programu regulátora teploty	49
39	Meranie skokovej odozvy regulátora teploty	49
40	Bloková schéma dosky napájania	50

41	Charakteristika vybíjania lítiových batérií	52
42	Schéma zapojenia obvodu MAX1873	53
43	Graf regulácie nabíjacieho prúdu a napätia batérie počas nabíjania.	53
44	Schéma meničov napätia.	55
45	Schéma zapojenia backplane konektora	56
46	Vstupné napätia referenčnej dosky.	57
47	Schéma lineárnych stabilizátorov pre galvanicky oddelené napájacie vetvy	58
48	Schéma lineárneho stabilizátora s neoddeleným vstupným napätím, pre napá-	
	janie riadiacich obvodov termostatu.	59
49	Doska plošných spojov pre obvody referencie (horná vrstva - červená, stredná	
	vrstva 1 - béžová, stredná vrstva 2 - belasá, spodná vrstva - modrá)	60
50	Nákres vrchného dielu hliníkovej krabičky	60
51	Nákres spodného dielu hliníkovej krabičky.	60
52	3D zobrazenie oboch častí hliníkovej krabičky.	61
53	3D model vrchného dielu plastovej krabičky.	61
54	3D model spodného dielu plastovej krabičky.	61
55	Výstupný konektor etalónu, Pomona electronics typ 3770	62
56	Konfigurácia polygónov pre lepšie chladenie lineárnych stabilizátorov	62
57	Celková architektúra referenčnej dosky.	63
58	Doska napájania	63
59	Integrácia elektroniky referencie do zásuvného modulu. Zelená krabička je 3D	
	vytlačená tepelná izolácia	64
60	Predný panel zásuvného modulu.	64
61	Skok výstupného napätia referencie po dosiahnutí nominálnej teploty termostatu.	65
62	Meranie výstupu 10,000 000 V počas počiatočného vyhrievania termostatu	66
63	Meranie výstupu 10,000 000 V po počiatočnom vyhriatí termostatu	66
64	Obvod v znázorňujúci presluch od spoločnej zemnej impedancie	67
65	Nesprávne pripojenie výkonového vyhrievacieho obvodu na referenčnú rovinu	
	presnej časti obvodu	68
66	LT Spice simulácia Kelvin-Varleyho deliča pre presné dostavenie 10,000 000 V.	69
67	Principiálne zapojenie osciloskopu pre účel merania únikového prúdu.	70

68	Meranie únikového prúdu etalónu po úprave. Mierka x-os 20 ms/dielik, y-os	
	100 mV/dielik, vstupný odpor $1~M\Omega$	71
69	Detail obvodu referencie.	72
70	Prvé overenie funkčnosti elektroniky referencie	73
71	Osadená doska referencie pred montážou vyhrievacej krabice	74
72	Doska referencie, pohľad zo spodnej strany plošného spoja	74
73	Doska referencie s nainštalovanou vyhrievacou krabicou	74
74	Detail nainštalovanej vyhrievacej krabičky na doske referencie	75
75	Detail osadenej dosky napájania.	76
76	Schéma pripojenia Arduino NANO k mikroprocesoru ATMEGA328P pre účely	
	zavádzania programového vybavenia do etalónu	77
77	Zložený zásuvný modul bez bočných stien.	78
78	Zobrazenie v režime analýzy Fluke 8588A	79
79	Prvé zapnutie skompletizovanej referencie.	79
80	Prvé zapnutie finálnej verzie na ÚE FEI STU	79
81	Etalón v laboratóriu B309 na Ústave Elektrotechniky, FEI STU Bratislava	81
82	Etalón v laboratóriu elektrických veličín, SLM Bratislava	81
83	Ustaľovanie výstupného napätia referencie od prvého zapnutia	82
84	Priebeh ustaľovania a občasné náhodné skoky výstupného napätia na úrovni	
	zlomku $\mu V/V$	82
85	Principiálna schéma pre meranie teplotnej stability	83
86	Meranie teplotnej stability etalónu v laboratóriu SLM. Vľavo referenčné teplo-	
	mery, v pravo referenčný mnohomer.	84
87	Teplotná stabilita 10 V výstupu etalónu napätia	85
88	Výňatok z kalibračného listu etalónu Fluke 732C-S z Českého metrologického	
	inštitútu. Plný protokol je v prílohe 6.6	86
89	Schéma zapojenia pre meranie stability $\Delta M \Delta 733 A$ voči etalónu Fluke 732C-S.	86
90	Porovnávanie etalónu voči Fluke 732C-S	87
91	Časový priebeh hodnoty rozdielu napätí nášho etalónu a Fluke 732C-S	88
92	Allanova odchýlka hodnoty rozdielu napätí nášho etalónu a Fluke 732C-S	88
93	Opakovateľnosť výstupného napätia po štyroch úplných teplotných a napájacích	
	cykloch	89

94	Meranie šumu rôznych typov etalónov napätia v laboratóriu elektrickej metro-	
	lógie CERN. V strede na stole je zosilňovač LFLNA-80	90
95	Šumová spektrálna hustota zrealizovaného etalónu a porovnanie s inými eta-	
	lónmi napätia.	91
96	Špecifikácia referenčného mnohomeru Fluke 8588A pre rozsah jednosmerné	
	napätie, k = 2	93
97	Kalibrácia bez okrúhlej pečiatky - porovnanie merania hodnoty výstupného na-	
	pätia dvoma metódami, k = 2	95

Zoznam tabuliek

1	Porovnanie dôležitých parametrov polovodičových referencií s rôznou topológiou.	11
2	Porovnanie parametrov laboratórnych etalónov	18
3	Popis pinov ADR1000	29
4	Výpočet výstupného napätia prevodníka na základe nastavenia binárneho reťazca.	38

Úvod

Etalóny napätia sa používajú v metrologických laboratóriách na prenos a udržiavanie fyzikálnej jednotky volt, pričom slúžia ako referencia, ku ktorej sú ostatné zariadenia laboratória vztiahnuté. V súčasnosti je najpresnejšou realizáciou voltu Josephsonovo pole, etalón založený na kvantovom princípe a základných prírodných konštantách, ktorý však nájde svoje využitie len v niekoľkých národných laboratóriách alebo medzinárodných inštitúciách s najvyššími požiadavkami. Pre prevádzkové použitie, nielen v rámci lokálnych laboratórií sa používajú polovodičové etalóny. Väčšinou sú založené na princípe veľmi stabilnej Zenerovej diódy ("burried Zener"). Ich výhodou je komerčná dostupnosť a vynikajúca dlhodobá stabilita výstupného napätia. Absolútna hodnota napätia polovodičových referencií sa potom kalibruje a dlhodobo sleduje s použitím Josephsonovho poľa.

Cieľom našej práce je navrhnúť a vyrobiť etalón napätia, založený na báze Zenerovej diódy, s použitím referenčného čipu ADR1000 pre Ústav elektrotechniky FEI STU v Bratislave. Práca sa zaoberá detailným popisom návrhu a výroby etalónu napätia vrátane jeho metrologickej charakterizácie, ktorá prezentuje dosiahnuté parametre nášho zariadenia.

1 Zdroje napätia presnej a známej hodnoty

Etalón, pôvodom z francúzskeho slova étalon, je referenčná realizácia definície, napríklad fyzikálnej veličiny. Jedná sa o systém s presne definovaným vzťahom k jednotke danej veličiny. Etalón teda priamo nereprezentuje jednotku fyzikálnej veličiny, ale má stabilnú hodnotu a známu hodnotu neistoty voči skutočnej hodnote. Etalóny sa vo všeobecnosti využívajú ako referenčné zariadenia, na prenos hodnoty, alebo na porovnanie voči menej presným prístrojom. Z hľadiska presnosti a správnosti hodnoty je možné ich rozdeliť do niekoľkých úrovní. Sedem základných jednotiek SI sústavy je definovaných na základe fundamentálnych prírodných konštánt a všetky ostatné, takzvané odvodené jednotky z nich vychádzajú. Prvou kategóriou etalónov je primárny etalón, ktorý je priamou realizáciou fyzikálnej jednotky podľa definície a nekalibruje sa. Na primárny etalón sú naviazané sekundárne etalóny, ktoré už nie sú realizované pomocou základných fyzikálnych konštánt a prírodných princípov, ale pomocou zariadenia, alebo objektu, ktorého vzťah a vlastnosti ku primárnemu etalónu sú známe. Pomocou nich dokážeme jednotku distribuovať. Sekundárne etalóny sú priamo naviazané na primárne, majú presne známu neistotu voči primárnym etalónom. Ďalšie členenie sa môže líšiť. Je dôležité poznamenať, že využitie etalónov v daných kategóriách záleží na aplikácii a požiadavkách na presnosť a správnosť hodnôt fyzikálnych veličín používaných v konkrétnom podniku, ústave, alebo laboratóriu. Primárne etalóny v súčastnosti už nie sú výhradnou doménou vybraných národných metrologických laboratórií. Vlastný primárny etalón využívajú aj firmy, alebo výskumné laboratóriá. Napríklad spoločnosť Fluke Calibration vyrábajúca meraciu techniku metrologickej kvality má vlastné Josephsonove pole pre realizáciu SI jednotky volt, alebo vedecké laboratórium CERN prevádzkuje vlastný, céziovou fontánou disciplinovaný, aktívny vodíkový maser ako zdroj v súčasnosti najpresnejšej frekvencie [10] [11]. A naopak, existuje národné metrologické laboratórium, ktoré prevádzkuje len jediný kalibrovaný sekundárny etalón napätia...

Etalón napätia

Etalón napätia je elektronické zariadenie, ktoré generuje napätie ideálne konštantnej hodnoty, ktorá nie je závislá od záťaže, napájacieho napätia, zmien teploty alebo času. Keďže sa práca zaoberá návrhom a realizáciou etalónu napätia, je užitočné zadefinovať základné pojmy a zhrnúť súčasný stav riešenej problematiky.

2

Obr. 1: Typická hierarchia etalónov fyzikálnej veličiny.

Elektrické napätie

Elektrické napätie je integrálna veličina elektromagnetického poľa, ktorá predstavuje rozdiel elektrických potenciálov medzi dvoma bodmi v priestore. Výsledný rozdiel reprezentuje energiu potrebnú na prenesenie jednotkového elektrického náboja medzi týmito dvoma bodmi v danom elektrickom poli.

$$U_{12} = \int_{1}^{2} \vec{E} d\vec{l}$$
 (1)

Definícia Voltu

Volt [V] je jednotka elektrického potenciálu, elektrického napätia a elektromotorickej sily v medzinárodnej sústave jednotiek *SI*. Definícia Voltu pomocou základných jednotiek SI je:

$$V_{SI} = kg \cdot m^2 \cdot s^{-3} \cdot A^{-1} \tag{2}$$

Fyzikálne je volt definovaný ako potenciálový rozdiel medzi dvoma koncami vodiča ktorým tečie prúd 1 ampér pričom tento vyžaruje výkon 1 watt. V praxi sa primárny etalón voltu resp. napätia realizuje pomocou Josephsonovho javu. [11]

1.1 Praktická realizácia etalónu a referencií napätia

V úvode tejto kapitoly sme spomenuli niekoľko kategórií etalónov. Všetky tieto kategórie sú založené na praktickej realizácii, či už ide o realizáciu primárneho etalónu pomocou základných fyzikálnych konštánt (Josephsonov jav), precízne polovodičové referencie pre sekundárne etalóny alebo jednoduché integrované obvody, či diskrétne súčiastky ako napríklad zenerova dióda používané v bežných elektronických obvodoch. V tejto kapitole si predstavíme historický vývoj praktickej realizácie referencií a etalónov napätia ich parametre, porovnanie a súčasné trendy.

1.1.1 Dôležité parametre referencií napätia

Za základné parametre napäťových etalónov všetkých druhov môžeme považovať absolútnu hodnotu napätia, zmenu/drift absolútnej hodnoty napätia s časom, teplotou, alebo iným externým parametrom, šum ale aj cenu. Samozrejme každý z týchto parametrov má pre konkrétnu aplikáciu, alebo klienta rôznu váhu. Vždy sú dôležité konkrétne požiadavky jednotlivých laboratórií, firiem, alebo užívateľov. Cena je určite dôležitým parametrom pre masové komerčné aplikácie, technické parametre sú obyčajne sekundárne kritérium. A naopak, pre metrologické aplikácie je najdôležitejšia kvalita a stabilita realizovanej veličiny, cena je síce dôležitý, ale stále sekundárny parameter. [2] [12]

1.1.2 Elektrochemický článok

Klasický elektrochemický článok nie je veľmi dobrým príkladom napäťovej referencie keďže je navrhnutý s účelom dodávať energiu, nie časovo stabilné napätie známej hodnoty. Väčšina je nestabilná aj teplotne pričom funkcia teplotnej stability je nelineárna.

Avšak boli vyvinuté tzv. štandardné elektrochemické články, ktorých úlohou je vytvoriť známe, definované a opakovateľné napätie. Aj po sto rokoch od ich vzniku môžeme nájsť v niektorých laboratóriách ako napäťové referencie s pomerne slušnými parametrami. Samozrejme tieto referenčné články musia byť udržiavané v prísnych podmienkach a nesmieme z nich odoberať prúd. [13]

Clarkov článok

Clarkov článok, vynájdený anglickým inžinierom Josiahom Latimerom Clarkom v roku 1873, je chemický článok, ktorý generuje vysoko stabilné napätie. V roku 1893 bolo napätie Clarkovho článku pri teplote 15 °C definované Medzinárodným elektrickým kongresom zasadajúcim v Chicagu ako 1,434 V a stal sa definíciou voltu v spojených štátoch koncom 19. storočia. V tom čase bola väčšina zákonov popisujúca elektrické etalóny schválená práve týmto kongresom, ktorého sa okrem Spojených Štátov Amerických zúčastnili aj krajiny ako Veľká Británia,

4

Francúzsko, Švajčiarsko, Mexiko, Nemecko či Kanada. [14] Technológia má dve základné nevýhody: pomerne veľký teplotný koeficient -1,15 mV/°C a problémy s koróziou použitých materiálov. [13]

Westonov článok

Westonov článok je v podstate vylepšením Clarkovho článku, ktorý bol v roku 1893 zostrojený Edwardom Westonom. Jeho výhodou oproti Clarkovmu článku je definícia napätia na viac platných číslic (1,018638 V) a pomerne vysoká teplotná stabilita v rozsahu 0 až 40 °C definovaná rovnicou:

$$V_t = V_{20} - 0.0000406(t - 20) - 0.00000095(t - 20)^2 - 0.00000001(t - 20)^3$$
(3)

Kde V_t reprezentuje napätie pri teplote t. Zaujímavosťou je, že Westonov článok slúžil ako medzinárodný etalón elektromotorickej sily (napätia) od roku 1911 až do roku 1990 kedy bol nahradený etalónom napätia využívajúcim Josephsonov jav [13] [14]. Aj moderné, súčasné elektronické etalóny napätia majú z historických dôvodov stále výstup 1,018 V.

1.1.3 Polovodičové referencie

Elektrochemické etalóny napätia boli z hľadiska klasického použitia v laboratóriách, výrobe a vývoji pomerne nerentabilné, náročné na údržbu a obsluhu. Všetky tieto nevýhody môžu byť eliminované pomocou použitia polovodičových riešení, ktoré sú komerčne dostupné a ľahko implementovateľné do elektronických obvodov. [2]

Zenerova dióda

Najjednoduchšou formou polovodičovej referencie je zenerova dióda, ktorá funguje na báze nedeštruktívneho prierazu. To znamená, že ak je Zenerova dióda otočená v závernom smere dochádza pri určitej hodnote napätia (Zenerovo napätie) k prierazu (Zenerov prieraz). V tomto regióne dochádza aj pri veľkých zmenách prúdu len k malej zmene napätia. Práve tento jav sa využíva pri použití Zenerovej diódy ako napäťovej referencie. Na realizáciu takejto referencie potrebujeme okrem Zenerovej diódy aj rezistor, ktorý zabezpečí konštantý prúd pri nezaťaženom výstupe referencie a zdroj napätia, ktorý je vačší ako potrebné Zenerovo napätie pre danú diódu.

Obr. 2: Jednoduché zapojenie Zenerovej diódy ako referenčného obvodu.

Zenerove diódy sú dostupné pre širokú škálu napätí od 2 do 200 V so stratovým výkonom až do 50 wattov a toleranciách 1% až 20%. Avšak napriek svojej jednoduchej aplikácií a širokému výberu majú aj množstvo nevýhod. Zenerove diódy majú pomerne veľký šum (nad 7V) a Zenerovo napätie je závislé od teploty a prúdu čo môže znamenať vysokú nestabilitu výstupného napätia referencie pri zmene teploty alebo elektrického zaťaženia. Ako konkrétny príklad uvedených nevýhod sa hodí populárna séria diód 1N5221 kde teplotný koeficient narastá spolu z výstupným napätím a predstavuje približne $0,1\%/^{\circ}$ C a zmenou prúdu pri 10% až 50%maximálneho prúdu sa zmení výstupné zenerovo napätie o 1%. Výnimkou z tohto všeobecne slabého výkonu sú diódy ktorých Zenerove napätie sa pohybuje v okolí 6 V. Kde sa tieto diódy preukazujú ako teplotne aj prúdovo menej závislé narozdiel od diód ktorých Zenerovo napätie je vyššie alebo nižšie ako 6 V. [12]

Obr. 3: Volt-Ampérova charakteristika Zenerovej diódy so znázornenou hranicou Zenerovho prierazu *Uz* v závernom smere. Na obrázku tiež môžeme vidieť že pri zmene teploty T (znázornené ako T1, T2 a T3) dochádza k posunutiu hranice Zenerovho prierazu.

Existujú však aj Zenerove referencie, ktoré obsahujú teplotnú kompenzáciu a väčšinou sú súčasťou integrovaného obvodu s viacerými vývodmi, v angličtine sa pre takýto typ referencií používa názov *"Buried zener diode references"*. Samotný integrovaný obvod obsahuje vlastné vyhrievanie pre teplotnú stabilizáciu zenerovej diódy a prípadne aj niekoľko ostatných obvodov, ktoré zabezpečujú stabilitu výstupného napätia pri zmene prúdu. Nastavenie konkrétnej teploty vyhrievania integrovaného obvodu a ďalších parametrov je vykonávané pomocou externých obvodov pripojeným k referenčnému čipu. Na tieto sú kladené taktiež vysoké požiadavky na teplotnú stabilitu a šum. Integrované Zenerove referencie sa vyznačujú dlhodobou stabilitou zvyčajne 6-15 ppm na 1000 hodín, šumom $10 \,\mu$ V a teplotným koeficientom 1-10 ppm na °C [2]. Vrcholnými predstaviteľmi takýchto referenčných čipov sú LTZ1000, ADR1399, LM399 alebo najnovší prírastok ADR1000 o ktorom sa dozvieme detailné informácie v ďalšom obsahu práce. [12]

Obr. 4: Zapojenie a dlhodobá stabilita integrovaného referenčného obvodu LTZ1000 využívajúceho zenerovu diódu [1].

Bandgap referencia

V najjednoduchšom prevedení predstavuje Bandgap referenčný zdroj dva tranzistory zapojené v konfigurácii prúdového zrkadla s rôznou plochou emitora a teda rôznou hustotou emitorového prúdu (typicky v pomere 10:1) [12], ktoré sa používa na generovanie napätia úmernému absolútnej teplote. Keďže napätie mezi bázou a emitorom tranzistora má záporný teplotný koeficient, snažíme sa vytvoriť rovnako veľký avšak kladný teplotný koeficient. V ideálnom prípade potom dôjde k vzájomnej kompenzácií teplotných koeficientov a získavame referenčné napätie nezávislé od teploty.

Obrázok 5 popisuje principiálne zapojenie bangap referencie kde je napájacie napätie Ucc premenené na prúd I_1 a I_2 a napätia medzi bázou a emitorom U_{BE1} a U_{BE2} sú reprezentované diódami a majú navzájom opačný teplotný koeficient. Výsledné napätie je potom dané vzťahom:

$$U_V = U_{BE1} + \lambda (U_{BE1} - U_{BE2}) \tag{4}$$

Kde U_{BE1} reprezentuje napätie tranzistora s väčšou plochou emitora ako U_{BE2} a λ je škálovací koeficient. [2]

Obr. 5: Principiálne zapojenie bandgap referenčného obvodu [2].

Vo všeobecnosti sa Bandgap referencie vyznačujú teplotným koeficientom približne 25-50 ppm/°C, šumom 15-30 μ V a dlhodobou stabilitou 20-30 ppm/1000 hodín. [2]

JFET pinch-off (XFET) referencia

XFET referencia je pomerne nová technika, ktorá funguje analogicky k bandgap referencií a využíva napätie medzi hradlom (gate) a zdrojom (source) páru JFET tranzistorov. [2]

Na obrázku 6 vidíme pár tranzistorov, ktorými preteká rovnaký zdrojový prúd avšak jeden z tranzistorov má špeciálnu prímes (implantát) v jednom z kanálov (v obrázku 6 vyznačený hviezdičkou), ktorý vytvára rozdiel hradlových napätí približne 0,5 V. Toto napätie je relatívne stabilné s teplotným koeficientom približne 10 ppm/°C, čo je v porovnaní z koeficientom bandgap referencie lepší výsledok. Navyše majú nižší šum, ktorého maximá sa pohybujú pri $15 \,\mu\text{V}$ a dlhodobú stabilitu, ktorá dosahuje až 0,2 ppm/1000 [2] hodín. [12]

Floating-gate (FGA) referencia

Firma Intersil pôvodne prišla s nápadom a následne aj vyvinula funkčnú napäťovú referenciu založenú na princípe vloženia malého množstva náboja na dobre izolované hradlo (gate) MOSFET tranzistora počas jeho výroby, tento hradlový náboj ostáva izolovaný v škrupine hradla nezávisle od funkcie tranzistora. MOSFET sa následne správa ako napäťový sledovač, ktorý vytvára stabilné výstupné napätie. Stabilita výstupného napätia potom závisí práve od nemennosti daného náboja na hradle t.j., že sa nezväčšuje ani nezmenšuje. Typicky sa tento náboj bez zmien môže udržať na hradle až 10 rokov. [15] [12]

Obr. 7: Zjednodušená architektúra FET tranzistora obsahujúceho plávajúce hradlo s inektovaným nábojom (červené +).

Porovnanie parametrov polovodičových referencií

Parameter	1N5221	ADR1399	LTZ1000	AD680	ADR291	ISL60002
Topológia	Zopor	Buried	Buried Buried Bondgon VEET	Dandgan	YEET	EGA
Topologia	Zener	Zener	Zener	Danuyap		TUA
Výstupné	24	7.05	7.2	25	25	1 0241/
napätie (V)	۲,4	7,00	7,2	2,0	2,0	1,0240
Teplotný	-850	1	0.05	20	Q	20
koeficient (μ V/V/°C)	-030	I	0,00	20	0	20
Šum 0,1-10 Hz	_	1 /	1.2	Q	Q	30
(μ Vpp)	_	1,4	1,2	0	0	50
Cena(\$)	0,019	10,99	59,92	2,84	3,36	4,66
Napájacie	_	95-40	>10	5	3	-5 5
Napätie (V)	-	9,3 - 40	>10	5	5	<0,0
Počiatočný	_	0.3	0.288	0.01	0.0025	0.001
Drift (V)	-	0,5	0,200	0,01	0,0025	0,001
Dlhodobá		7	2	25	50	50
stabilita ppm/ \sqrt{kHr}	-			20	50	50

Tabuľka 1: Porovnanie dôležitých parametrov polovodičových referencií s rôznou topológiou.

1.1.4 Etalón napätia využívajúci Josephsonov jav

Josephsonov napäťový štandard je založený na Josephsonovom jave, ktorý v roku 1962 predpovedal a v roku 1963 potvrdil Brian Josephson. Jedná sa o odvodenie rovníc pre napätie a prúd cez prechod/spojenie, pozostávajúce z tenkej izolačnej bariéry, oddeľujúcej dva supravodiče (Josephsonov prechod). Brian Josephson konkrétne predpovedal **dva javy**, ktoré vznikajú v dôsledku tunelovania (kvantový tunelový jav) Cooperových párov (nosiče náboja v supravodiči) cez tento prechod, to znamená spojenie makroskopickej vlnovej funkcie dvoch supravodičov:

1. Cez tento prechod môže pretekať jednosmerný prúd / definovaný funkciou:

$$I = I_c \sin \Phi \tag{5}$$

Kde I_c označuje kritický prúd (závislý od geometrie prechodu) a Φ je fáza medzi makroskopickou vlnovou funkciou dvoch supravodičov.

 Ak na prechod aplikujeme jednosmerné napätie začne ním pretekať striedavý prúd s frekvenciou f_J, kde:

$$f_J = \frac{2e}{h}U\tag{6}$$

Potom je Josephsonov prechod oscilátor kde e reprezentuje elementárny náboj, h reprezentuje Planckovu konštantu a U riadiace napätie.

Druhý jav je reciproký, pri ožarovaní Josephsonovho prechodu externými mikrovlnami s frekvenciou *f*, daný prechod vytvára konštantné napätie, ktorého hodnotu získame odvodením z rovnice 6 ako:

$$U = \frac{h}{2e}f\tag{7}$$

Pridaním fázového závesu naviazaného na jednotlivé harmonické riadiacej frekvencie externého oscilátora s frekvenciou *f*, je možné vytvoriť konštantné napäťové kroky (obrázok 8).

Obr. 8: Konštantné napäťové kroky volt-ampérovej charakteristiky Josephsonových prechodov [4].

Výsledné napätie je potom dané súčtom takýchto krokov:

$$U(f,n) = nf\frac{h}{2e} \tag{8}$$

Je teda závislé od frekvencie externého oscilátora f, Planckovej konštanty

 $h = 6,62607015 \cdot 10^{-34} \text{m}^2 \text{ kg s}^{-1}$, elementárneho náboja $e = 1,602176634 \cdot 10^{-19} \text{C}$ a počtu Jo-

sephsonových prechodov *n* [16]. Pričom frekvencia je fyzikálna veličina, ktorú dokážeme realizovať s najvyššou presnosťou zo všetkých veličín, kde sa očakáva, že nová generácia céziovej fontány ako frekvenčného etalónu *NIST-F4* dosiahne presnosť blížiacu sa úrovni $1 \cdot 10^{-16}$ Hz [17]. Pri použití štandardnej frekvencie 70 GHz môžeme vzdialenosť medzi Josephsonovými krokmi určiť na približne 150 µV. V praxi sa namiesto výrazu h/2e používa aj jeho recipročná hodnota, ktorú nazývame Josephsonova konštanta K_J . Po revízií SI sústavy v roku 2019 platí referenčná hodnota $K_J = 2e/h = 483597, 848416984...GHz/V$ [18]. S použitím tejto konštanty môžeme Rovnicu 8 prepísať ako:

$$U(f,n) = \frac{nf}{K_J} \tag{9}$$

Samotná realizácia Josephsonovho napäťového štandardu predstavuje komplexný systém, ktorý využíva supravodivý integrovaný obvod pracujúci pri teplote 4,2 K, generujúci stabilné napätie, ktorého hodnota závisí len od už zmienených fundamentálnych prírodných konštánt (*e*, *h*) a aplikovanej riadiacej frekvencie (*f*). Práve vďaka definícii pomocou týchto konštánt sa eliminuje vplyv vstupných premenných do procesu ako čas, teplota či tlak a tým pádom aj jeho presnosť a stabilita. [4]

Z praktického hľadiska je vhodné Josephsonov napäťový štandard realizovať ako pole viacerých (typicky niekoľkých jednotiek až desiatok tisíc) Josephsonových prechodov zapojených v sérii. Takáto konfigurácia nám potom umožní dosiahnuť praktické hodnoty napätia akými sú napríklad 1 V alebo 10 V. V súčastnosti sú najviac používanými a dôveryhodnými technológiami PJVS (Programmable Josephson Voltage Standard), ktorý dokáže generovať používateľom špecifikované jednosmerné napätie v rozsahu od -10 V do 10 V a JAWS (Josephson Arbitrary Waveform Synthesizer), ktorý generuje používateľom určené striedavé napäťové funkcie rôznych tvarov (ako sú obdĺžnikové priebehy používané v digitálnych technológiách) pri amplitúde 2 V a frekvenciách do milióna Hz.

Realizácia a použitie Josephsonových štandardov je náročné, avšak hrá podstatnú úlohu v elektrickej metrológii ako primárny etalón napätia. [19]

13

Obr. 9: Graf napätia voči frekvencii porovnávajúci JAWS a PJVS. Modrá prerušovaná čiara reprezentuje možný budúci vývoj pre JAWS zatiaľ čo oranžová prerušovaná čiara označuje limit RMS napätia pre PJVS [5].

Obr. 10: Realizácia Josephsonovho sériového poľa JAWS (vľavo) a PJVS (vpravo) [5].

1.1.5 Tvorba, udržiavanie a prenos referenčných štandardov

Vyššie popísané technológie reprezentujú princípy, ktoré je možné použiť pri vytvorení primárnych, sekundárnych alebo pracovných etalónov ako hotových laboratórnych zariadení, ktoré je možné používať na udržiavanie a prenos voltu. Tieto zariadenia tvoria kalibračnú reťaz, kde na začiatku stoja komerčné voltmetre, kalibrátory alebo zdroje a na konci stojí v súčastnosti Josephsonov etalón napätia. Táto kalibračná reťaz reprezentuje prechod s nášho fyzického sveta neistôt a nepresností do sveta základných jednotiek SI sústavy, ktoré sú reprezentované nemennými prírodnými konštantami.

Obr. 11: Diagram reprezentujúci definíciu a udržiavanie etalónov napätia [6] (Chapter 6, pg.:6-7, Figure 6-1).

Praktická realizácia systému udržiavania jednotky volt (z obrázku 11) v Švajčiarskom federálnom metrologickom inštitúte METAS v Berne je zachytená na fotografiách 12 a 13.

Na obrázku 12 v strede vidíme kryostat a v ňom vložené Josephsonove pole. Vľavo sú všetky potrebné podporné prístroje. METAS prevádzkuje vlastnú céziovú fontánu a atómové hodiny ako primárny etalón frekvencie, ktorý sa používa aj pre budenie Josephsonových polí v inštitúte.

Na obrázku 13 vľavo je pole Zenerových referencií Fluke 732A, ktoré je naviazané na Josephsonov primárny etalón napätia. METAS používa staršiu generáciu Zenerových referencií z dôvodu vysokej stability a veľmi dlhej doby pozorovania (desiatky rokov). Referencie sú vystarnuté a ich drift je zdokumentovaný a dobre predikovateľný.

V modrom racku napravo sú referencie od zákazníkov v procese kalibrácie.

Obr. 12: Etalón napätia v METAS, Bern, Švajčiarsko. Foto kredit D. Valúch.

Obr. 13: Pole Zenerových referencií naviazaných na primárny etalón (Josephsonove pole) v METAS, Bern, Švajčiarsko. Foto kredit D. Valúch.

1.2 Porovnanie laboratórnych etalónov napätia

Podobne ako obrázok 11, aj tabuľka 2 v krátkosti popisuje a porovnáva niekoľko referenčných zariadení v zostupnom poradí. Keďže Josephsonovo pole a pred ním Westonov článok slúžia ako definícia voltu, nie sú vztiahnuté k žiadnemu nadradenému etalónu. Fluke 732C a 752A sú komerčné, prenosné polovodičové štandardy, ktoré môžu byť používané ako laboratórny alebo aj národný etalón, pričom sú naviazané priamo alebo nepriamo (obr. 11) k nadradeným etalónom.

······································				
Typ etalónu	Výstupné napätie	Neistota	Vztiahnuté k	Popis
Josephsonovo pole	$-10\mathrm{V}$ do $10\mathrm{V}$	0.4 μV/V	SI definícia voltu	Primárny etalón
Westonov článok	1,018 638 V	-	SI definícia voltu	Primárny etalón
			(do 1990)	(do 1990)
	0,1 V	0,3 µV/V/30 dní		
Fluke 732C	1 V	0,6 µV/V/30dní	Josephson alebo iny	Sekundárny etalón
	10 V	1,2 μ V/V/30 dní	nadradeny etaion	
Fluke 752A	10:1, 0 - 100V	0,2 μV/V	Josephson alebo iný	Sekundárny etalón
	100:1, 0 - 1000V	0,5 μV/V	nadradený etalón	
Fluke 5730A	0V do 1000V	-	Nadradený etalón	Referenčný kalibrátor
Fluke 8588A	10V DC	3.6 + 0.05	Nadradený etalón	Referenčný multimeter

Tabuľka 2: Porovnanie parametrov laboratórnych etalónov.

2 Štatistické metódy v metrológii

Štatistické metódy sú užitočným nástrojom pre spracovanie a vyhodnocovanie výsledkov merania. Umožňujú nám získať hlbšie vniknutie do interpretácie získaných výsledkov a následne vyhodnotenie relevantných údajov akými sú šum, neistoty alebo stabilita testovaného zariadenia. Porozumenie a správne využitie štatistických metód, je neoddeliteľnou súčasťou metrológie a nezaobídeme sa bez nich ani v ďalšom popise našej práce. V tejto kapitole sa budeme zaoberať konkrétnymi pojmami, ktoré sú užitočné pre vyhodnocovanie nameraných údajov etalónu napätia, akými sú napríklad smerodajná odchýlka, Allanova odchýlka alebo definícia pojmov neistoty a chyby merania.

2.1 Smerodajná odchýlka

Smerodajná odchýlka popisuje šírku rozloženia údajov okolo aritmetického priemeru skúmanej množiny. Matematicky je definovaná druhou odmocninou rozptylu údajov v množine. Pre postupnosť údajov $x_1, ..., x_N$ vypočítame aritmetický priemer pomocou vzťahu:

$$\overline{x} = \frac{1}{N} \sum_{i=i}^{N} x_i \tag{10}$$

Smerodajnú odchýlku môžeme potom vypočítať ako:

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \overline{x})^2}$$
(11)

Kde σ reprezentuje hodnotu smerodajnej odchýlky, N je počet vzoriek v množine, x_i je hodnota vzorky *i* v postupnosti (*i* = 1 až N) a \overline{x} reprezentuje aritmetický priemer množiny údajov.

Pre príklad uvažujme množinu nameraných údajov z etalónu napätia na 10 V výstupe, kde referenčný multimeter zmeral hodnotu napätia každých 10 sekúnd po dobu 24 hodín. V takomto prípade máme množinu 8640 vzoriek napätia. Potom môžeme rovnicou 11 vypočítať smerodajnú odchýlku, ktorá nám poskytne mieru variability a teda stability etalónu v čase. [20] [6]

2.2 Allanova odchýlka

Allanova odchýlka pomenovaná po Davidovi W. Allanovi je štatistická metóda použivaná primárne na vyjadrenie frekvenčnej stability oscilátorov alebo zosilňovačov. V posledných rokoch sa táto metóda ukázala ako užitočná aj pri definovaní časovej stability resp. šumu napäťových etalónov. V štatistike poznáme dva súvisiace pojmy, ktorými sú rozptyl a odchýlka. Tieto dva pojmy súvisia aj pri téme Allanovej odchýlky, ktorá je rovná druhej odmocnine Allanovho rozptylu [20]. Allanov rozptyl je tak definovaný vzťahom:

$$\sigma_y^2(\tau) = \frac{1}{2} \left\langle \left(\overline{y}_{k+1} - \overline{y}_k \right)^2 \right\rangle$$
(12)

kde:

 $\sigma_y^2(\tau)=$ Allanov rozptyl $\overline{y}_k={\rm k-t} \acute{y}$ zlomkový frekvenčný priemer za čas pozorovania τ

 $\langle ...
angle =$ operátor očakávania

Obr. 14: Príklad funkcie na ktorú aplikujeme výpočet Allanovho rozptylu [7].

Medzi výhody použitia Allanovej odchýlky patrí v našom prípade hlavne identifikácia a priame zobrazenie rôznych druhov šumu ako 1/f, biely šum, drift alebo dokonca Brownov šum čo je pre elektroniku nezvyčajné. Táto metóda nám takisto poskytuje priame zobrazenie neistoty typu A. Nevýhodou metódy je potreba dostatočného počtu vzoriek, čo implikuje potrebu predĺženia času merania. [7]

Testovanie bieleho šumu

Uvažujme sériu diskrétnych meraní jednotlivých vzoriek napätia y_k (k=1 až N) s časovým rozostupom τ , potom Allanov rozptyl môže byť vypočítaný zo vzťahu:

$$\sigma_y^2(\tau) = \frac{1}{2(N-1)} \sum_{k=1}^{N-1} (y_{k+1} - y_k)^2$$
(13)

Pomerom normálneho rozptylu a Allanovho rozptylu získame jednoduchý test bieleho šumu. Kde je normálny rozptyl daný vzťahom:

Obr. 15: Príklad Allanovej odchýlky systému, u ktorého sa uplatňuje 1/f šum, biely šum a časový dift (obe osi sú v logaritmickej mierke) [7].

$$\sigma^{2}(N) = \frac{1}{N-1} \sum_{k=1}^{N} (y_{k} - \overline{y})^{2}$$
(14)

Ak je pomer $\sigma^2(N)/\sigma_y^2(\tau) \leq 1+1/\sqrt{N}$, potom je pravdepodobne bezpečné predpokladať, že v súbore údajov dominuje biely šum a možno použiť klasický štatistický prístup akým je napríklad normálny rozptyl. Ak je však tento pomer väčší, naznačuje nám, že použitie klasických štatistických metód nie je vhodným riešením. Zlyhanie tohto testu však nutne neindikuje neprítomnosť bieleho šumu, to čo test skutočne indikuje je stupeň korelácie v množine nameraných údajov [6]

2.3 Chyby a Neistoty merania

Chyba merania je definovaná ako rozdiel skutočnej a prístrojom nameranej hodnoty danej veličiny. Neistoty merania určujú interval v okolí meranej veličiny, v ktorom sa skutočná hodnota nachádza s určitou, nami zvolenou pravdepodobnosťou (na rozdiel od chýb merania, ktoré určujú interval s pravdepodobnosťou 100%). Výsledok potom môžeme interpretovať ako $X \pm k_u u$, kde X reprezentuje odhad hodnoty meranej veličiny, u je neistota odhadu hodnoty meranej veličiny a k_u reprezentuje koeficient rozšírenia pre zvýšenie pravdepodobnosti. Pokiaľ výsledok ovplyvňuje viacero faktorov (>3) potom bude mať výsledné rozdelenie Gaussovský tvar kde

náhodná premenná ovplyvňujúca meranie nadobúda hodnotu v intervale -3σ až $+3\sigma$ okolo strednej hodnoty.

Obr. 16: Normálne rozdelenie (Gaussova krivka).

Normálne rozdelenie (obrázok 16) je definované krivkou, pričom väčšina bodov je zoskupená okolo priemeru a menej údajových bodov smerom k extrémom. Krivka má tvar zvona, preto sa volá "zvonová krivka". Pri normálnom rozdelení približne 68 % údajov spadá do jednej smerodajnej odchýlky od priemeru, 95 % do dvoch smerodajných odchýlok a 99,7 % do troch smerodajných odchýlok. Medzi zdroje neistoty môže patriť nepresná definícia meranej veličiny, nereprezentatívny výber vzoriek alebo obmedzené rozlíšenie meracích prístrojov. Podľa metódy vyhodnocovania môžeme neistoty rozdeliť do kategórie A, ktorá je reprezentovaná štatistickými metódami, a kategórie B, ktorá sa získava inými metódami. Obe tieto kategórie sú si rovnocenné a líšia sa len spôsobom získania [21].

- Neistota typu A Získame ju z intervalu výsledkov opakovaných meraní za rôznych podmienok, ktoré môžu vplývať na meranie. Výsledný tvar dát bude potom reprezentovaný normálnym rozdelením (obrázok 16). Výsledný odhad meranej hodnoty je reprezentovaný výberovým aritmetickým priemerom a neistota tohto odhadu je výberová smerodajná odchýlka z výberového aritmetického priemeru. Príčiny tejto neistoty sa považujú za neznáme.
- Neistota typu B Je reprezentovaná faktormi vplývajúcimi na meranie, ktoré sú nám dopredu známe resp. vieme ich spoľahlivo identifikovať. Medzi tieto faktory sa radia známe

parametre použitých prvkov, znalosť meracieho reťazca, neistoty samotných meracích prístrojov, meranie pri iných podmienkach ako boli prístroje kalibrované a pod.

3 Špecifikácie zariadenia

Etalón napätia 10 V bol navrhnutý na základe požiadaviek pre Ústav elektrotechniky FEI STU. Cieľom je navrhnúť a zrealizovať etalón napätia s použitím moderných polovodičových referencií, ktorý bude možné udržiavať nepretržite zapnutý a stabilizovaný na konštantnej teplote. Dôležitou informáciou v rámci špecifikácie je fakt, že etalón bude súčasťou väčšieho celku, konkrétne kalibrátora napätia a prúdu, ktorý je témou inej práce.

Etalón bude využívať referenčný čip ADR1000 s konkrétnym napäťovým výstupom. Výstupné referenčné napätie je potrebné upraviť (zosilniť resp. zoslabiť) na praktické hodnoty 10 V, 1 V a 0,1 V, pričom pri 10 V výstupe sa požaduje aj presná korekcia napätia až na úroveň jednotiek μV . Pri ostatných dvoch výstupoch (1 V a 0,1 V) sa korekcia nevyžaduje avšak ich hodnota musí byť stabilná a známa. Cieľom je dosiahnuť metrologickú kvalitu výstupných napätí a ich dlhodobú stabilitu lepšiu ako $5 \mu V/V$ za rok. Dôležitým faktorom je udržiavanie etalónu na konštantnej teplote. Toto bude docielené uzavretím referenčného čipu vrátane obvodov na úpravu napätia do termostatu, ktorý zabráni prietoku vzduchu a zabezpečí udržiavanie konštantnej vnútornej teploty. Voľba teploty závisí od okolitých podmienok v ktorých sa etalón nachádza, teplota okolia nemôže prekročiť teplotu na ktorú je termostat vyhrievaný inak by bolo nutné okrem vyhrievania realizovať aj chladenie etalónu.

Etalón bude možné prevádzkovať v troch režimoch napájania aby bola splnená požiadavka nepretržitého zapnutia. Základný režim napájania je etalón pripojený do kalibrátora, ktorý mu dodáva napájanie. V prípade potreby vysunutia etalónu z kalibrátora, napríklad pre účely použitia ako samostatného zariadenia alebo pre účely kalibrácie, obsahuje etalón aj ďalší konektor pre externé napájanie zo siete a takisto záložný batériový zdroj čím sa zabezpečí nepretržitý chod zariadenia bez vypnutia. Kvôli pripojeniu etalónu do kalibrátora je nutné prispôsobiť aj mechanickú integráciu celého zariadenia. Preto budeme využívať šasi v podobe zásuvného modulu, na ktorého zadnej stane bude konektor pre pripojenie do kalibrátora a prenos informácií z procesora. Na zadnej strane sa bude nachádzať aj konektor na pripojenie adaptéra zo siete. Predný panel zásuvného modulu bude obsahovať konektory pre tri špecifikované výstupné napätia, zem a kostru zariadenia. Modul je prispôsobený pre dve dosky plošných spojov o veľkosti $22 \,\mathrm{cm} \times 10 \,\mathrm{cm}$.

24

4 Realizácia

Kapitola sa zaoberá podrobným popisom návrhu a realizácie všetkých súčastí etalónu napätia, vrátane zdôvodnenia výberu jednotlivých princípov a súčiastok.

4.1 Možnosti realizácie a výsledná koncepcia

Na začiatku každého návrhu je dôležité mať presnú špecifikáciu zariadenia, ktorá by sa v ideálnom prípade nemala postupom času a vývoja meniť. V tejto časti si popíšeme úvodné myšlienky a výsledný koncept etalónu napätia, nebudeme sa však venovať detailnému popisu jednotlivých súčastí, tieto budú predmetom ďalšieho obsahu práce. Špecifikácia definuje viaceré požiadavky na základe ktorých je projekt možné rozdeliť do niekoľkých častí, z ktorých každá si vyžaduje samostatnú analýzu zahŕňajúcu preskúmanie možných riešení a výber optimálneho riešenia pre našu aplikáciu.

V počiatočných fázach vývoja bolo dôležité zadefinovať celkovú architektúru zariadenia. Rozhodli sme sa pre dve dosky plošných spojov, t.j. dosku napájania a dosku referencie. Doska napájania zabezpečuje prívod energie z adaptéra alebo back-plane konektora a zároveň nezávislý batériový zdroj zatiaľ čo doska referencie obsahuje samotný referenčný čip ADR1000 s prispôsobením napätia na požadovanú úroveň, teplotnou stabilizáciou a potrebným riadením. Na doske referencie sa nachádzajú aj lineárne stabilizátory napätia, ktoré znižujú napätie z dosky napájania na úroveň potrebnú pre jednotlivé obvody referenčnej dosky.

Obr. 17: Bloková schéma napájacej časti etalónu.

Na doske napájania, ktorej bloky sú zobrazené na obrázku 17 sme sa rozhodovali medzi

niekoľkými koncepciami. Prvou bola voľba integrovaného obvodu pre obsluhu batérií a záťaže. Táto voľba okrem iného súvisí najmä s typom chémie vybraných batérií, počtom batérií, zapojením a vstupným napätím obvodu. Väčšina súčasných integrovaných obvodov ponúka dva typy riešení z pohľadu chémie batérií, ktorými sú NiMH (nikelmetalhydridové akumulátory) a Li-lon (lítium iónové akumulátory). V našom prípade sme použili Li-lon akumulátory kvôli lepšiemu pomeru kapacity a rozmeru batérií a jednoduchšej integrácii batérií na dosku plošných spojov. Ďalším aspektom napájacej časti bola transformácia napätia kde sme v počiatočných fázach zvažovali použitie planárneho transformátora, ktorého závity by boli realizované ako vinutie priamo na plošnom spoji okolo ktorých sa pripevní jadro. Toto riešenie by však mohlo priniesť problémy spojené s parazitnou väzbovou kapacitou medzi primárnym a sekundárnym vinutím cez plošný spoj ako aj nižší koeficient väzby. Vo finále sme sa rozhodli použiť klasické toroidné jadro s navinutým vodičom.

Obr. 18: Bloková schéma referenčnej časti etalónu.

Pri referenčnej časti etalónu (obrázok 18) sme v prípade ADR1000, napájania a riadenia použili doporučené katalógové zapojenia, ktoré budú detailnejšie popísané v ďalších kapitolách. Pri termostate a prispôsobovacích obvodoch výstupného napätia referencie sme však vyberali z viacerých možných konceptov. Korigovanie výstupného napätia na úrovni mikrovoltov vyžaduje obrovskú rozlišovaciu schopnosť. Je možné ho realizovať napríklad hrubou silou pomocou Kelvin-Varleyho deliča napätia, ktorý si však vyžaduje rozsiahlu sieť rezistorov, na ktoré sú kladené vysoké požiadavky na časovú a teplotnú stabilitu. Samotná korekcia napätia je pomerne prácna a nepohodlná. Preto sme použili číslicovo-analógový prevodník (DAC) v spätnej väzbe

operačného zosilňovača v kombinácií s DIP prepínačom pre jednoduchú a priamočiaru korekciu výstupného napätia.

V rámci teplotnej stabilizácie je dôležité vyhýbať sa gradientom teploty pri ktorých by mohlo vzniknúť nežiadúce termoelektrické napätie. Preto bola úvodná koncepcia založená na úplnom elektrickom aj mechanickom oddelení referencie a jej pridružených presných obvodov od zbytku elektroniky etalónu. Referenciu a prispôsobenie napätia sme uzavreli do termostatu v rámci jednej dosky plošného spoja, ktorá obsahuje aj obvody riadenia, a napájania referencie. Z elektrického hľadiska sme mali možnosť použitia Peltierovho článku, ktorý umožňuje vyhrievanie aj chladenie. V našom prípade ale chladiaci element nie je potrebný, keďže celý termostat pracuje na teplote vyššej ako je teplota prostredia laboratória. Zvolili sme preto vyhrievanie pomocou tranzistorov. Druhá doska plošných spojov nesie batérie a DC/DC meniče a všetky obvody potrebné pre napájanie etalónu. Táto doska nie je citlivá na teplotné gradienty.

4.2 Referencia ADR1000

ADR1000 je referenčný čip založený na princípe "Burried zener diode" od spoločnosti Analog Devices a je nástupcom populárnej série LTZ1000, ktorá bola vyvinutá už v roku 1982 spoločnosťou Linear Technology (dnes súčasťou Analog Devices). ADR1000 je pinovo kompatibilná s LTZ1000 a môže priamo nahradiť čip LTZ1000 na už hotovej doske plošných spojov. Rozdielom je výstupné napätie týchto dvoch referenčných zdrojov. Zatiaľ čo LTZ1000 ponúka výstupné napätie 7,2 V, ADR1000 je navrhnutá pre nižšie výstupné napätie 6,62 V. ADR1000 obsahuje na čipe okrem Zenerovej diódy aj teplotnú stabilizáciu, ktorú realizuje pomocou vyhrievacieho rezistora a teplotný senzor v podobe tranzistora. Hodnotu vyhrievacej teploty a prevádzkového prúdu nastavujeme pomocou externých obvodov čo umožňuje vyššiu flexibilitu pri návrhu zariadenia.

Na obrázku 19 môžeme vidieť súčiastky nachádzajúce sa vnútri ADR1000, ktorými sú Zenerova dióda predstavujúca referenčný zdroj napätia, tranzistor Q2 slúžiaci ako teplotný senzor, tranzistor Q1 zabezpečujúci teplotnú kompenzáciu Zenerovej diódy, a vyhrievací rezistor. Výstupné referenčné napätie na výstupe 3 je tvorené súčtom napätia Zenerovej diódy a kompenzačného tranzistora Q1. Teplotný koeficient Zenerovej diódy sa pohybuje na úrovni $+2 \,\mathrm{mV/^oC}$ a je kompenzovaný teplotným koeficientom tranzistora Q1, ktorý činí približne $-2 \,\mathrm{mV/^oC}$. ADR1000 umožňuje nastavenie prevádzkovej teploty s rozlíšením niekoľko milistupňov v rozsahu až 100°C. Toto znamená, že ak by bol teplotný koeficient nevyhriatej

27

Obr. 19: Zjednodušená vnútorná schéma referencie ADR1000 [8].

referencie 20 ppm/°C, potom by teoreticky teplotný koeficient pri aktívnom vyhrievaní mohol dosiahnuť hodnotu až 0,2 ppm/°C [8]. V praktických podmienkach je pomerne zložité dosiahnuť takýto nízky teplotný koeficient, kvôli množstvu rozhraní materiálov, na ktorých môže vzniknúť termoelektrické napätie. Nie je to ale nemožné, ako nás presvedčil John Pickering a jeho firma Metron Designs.

Na obrázku 20 je napätie medzi bázou a emitorom V_{BE} tranzistora Q2 porovnávané s predeleným napätím Zenerovej diódy $V_{REF} = 6,62 V$ pomocou operačného zosilňovača U2. Delič v pomere 13 $k\Omega$: 1 $k\Omega$ tvorený rezistormi R4 a R5 upravuje napätie V_{BE} tranzistora

Číslo	Názov	Popis funkcie		
pinu				
1	HTR+	Kladná svorka vyhrievacieho elementu. HTR+ musí mať vyššiu alebo		
		rovnú hodnotu napätia ako HTR- a I_{ZSET}		
2	HTR-	Záporná svorka vyhrievacieho elementu. HTR- musí mať nižšiu alebo		
		rovnú hodnotu napätia ako HTR- a vyššiu hodnotu napätia ako I_{ZSET}		
3	V_{REF}	Kladná svorka Zenerovej diódy. Musí mať vyššiu hodnotu napätia ako		
		I _{ZSET}		
4	I_{ZSET}	Záporná svorka Zenerovej diódy. Musí mať vyššiu hodnotu napätia		
		ako GND		
5	C_{Q1}	Kolektor tranzistora pre teplotnú kompenzáciu (Q1)		
6	B_{Q2}	Báza teplotného senzora (Q2)		
7	GND	Emitor Q1 a Q2		
8	C_{Q2}	Kolektor teplotného senzora (Q2)		

Tabuľka 3: Popis pinov ADR1000.

Q2 na hodnotu okolo 474 mV. Pri izbovej teplote V_{BE} o veľkosti 474 mV neposkytuje dostatočný kolektorový prúd, aby sa splnila podmienka, že vstupné svorky U2 musia byť v rozmedzí aspoň niekoľkých stoviek mikrovoltov. Neinvertujúci vstup U2 sa teda zvyšuje až pokým sa nedosiahne napätie V_{REF} . Rozdiel medzi vstupnými svorkami U2 zapríčiňuje zvýšenie výstupného napätia tohto zosilňovača a tým pádom aj otvorenie tranzistora a vyšší disipovaný výkon na vyhrievacom rezistore. Pretože napätie medzi emitorom a bázou tranzistora Q2 má záporný teplotný koeficient, kolektorový prúd Q2 sa zvyšuje so zvyšujúcou sa teplotou čipu, čo spôsobuje, že sa rozdiel napätí medzi vstupmi operačného zosilňovača znižuje až kým pokles napätia na R3 neuspokojí požiadavky slučky. Teplota, na ktorej sú tieto požiadavky splnené je nastavená teplota čipu T_{SET} . [8]

Obrázok 20 ďalej zobrazuje externý operačný zosilňovač *U3*, v kombinácii s externým rezistorom *R1*, ktoré slúžia na nastavenie Zenerovho prúdu podľa rovnice:

$$R1 = \frac{(0,658V - 0,0022 \times T_{SET})}{I_Z} - 7 \ \Omega \tag{15}$$

Kde:

- T_{SET} je teplota vyhrievaného čipu
- I_Z je požadovaný Zenerov prúd

- 0,658 V je napätie medzi bázou a emitorom tranzistora Q1 pri 0 °C.
- 7Ω predstavuje odpor Zenerovej diódy ktorý musí byť zahrnutý vo výpočte

Priamym dôsledkom zvoleného Zenerovho prúdu I_Z je šum výstupného napätia referencie. ADR1000 môže dosiahnuť celkový šum 0,14 ppm čo je približne $0,9 \mu$ Vpp vo frekvenčnom rozsahu 0,1 až 10 Hz v prípade, že prúd Zenerovou diódou $I_{BZ1} = 5 \text{ mA}$ a kolektorový prúd tranzistora Q1 $I_{CQ1} = 100 \mu$ A, pričom primárnym zdrojom šumu je samotná Zenerova dióda. Zvýšenie prúdu I_{BZ1} znižuje šum referencie o inverznú druhú odmocninu Zenerovho prúdu. Avšak zvyšovanie prúdu nad hodnotu vyššiu ako 8 mA je nepraktické pretože energetické straty ovplyvňujú teplotu referencie. [8]

Obr. 21: Porovnanie šumu ADR1000 a LTZ1000 pri rôznych úrovniach záťaže bez zapnutého vyhrievania [8].

Šum referencie ADR1000 pri rôznych úrovniach zvoleného Zenerovho prúdu je zobrazený na obrázku 21. Z merania vyplýva, že vyšší zenerov prúd skutočne pozitívne ovplyvňuje výstupný napäťový šum referencie.

Charakteristickou vlastnosťou zenerových napäťových referencií je počiatočné ustaľovanie výstupného napätia. Zvyčajne sa v dátovom liste udáva graf závislosti napätia od času spustenia, ktorý nám indikuje predpokladaný čas ustálenia sa referencie na stabilnej hodnote (obrázok 22). Dátový list ARD1000 udáva dlhodobú stabilitu po prvých 3000 hodinách prevádzky 0,5 ppm/rok. Po prvom zapnutí referencie na báze Zenerových diód výrazne driftujú smerom nahor a následne sa pomaly ustaľujú (s násobne dlhšou časovou konštantou). John Pickering a jeho firma Metron Designs vyvinula metódu zrýchleného starnutia týchto referencí, detaily sú popísané v patente č. US5369245 [22]. Naša ADR1000 prešla týmto zahorovacím procesom cez vianoce 2022/2023 v laboratóriu elektrickej metrológie CERN. Preto sledujeme už len pomalé ustaľovanie v pravej časti grafu 22.

Obr. 22: Zobrazenie dlhodobej stability štyroch vzoriek ARD1000 pri teplote okolia $25 \,^{\circ}\text{C}$ a nastavenej teplote vyhrievania čipu $75 \,^{\circ}\text{C}$ [8]

Obr. 23: Vnútorná štruktúra ADR1000. HTR+ a HTR- sú pripojené na vodiče kruhového tvaru, ktoré obklopujú ostatné časti referencie a zabezpečujú tak rovnomerné rozloženie teploty na čipe. Na ostrove v strede sa nachádzajú jednotlivé PN prechody tranzistorov a Zenerova dióda, z ktorých sú následne vyvedené vodiče na piny (Zdroj: www.richis-lab.de)

Náš prístup

V predchádzajúcej časti sme popísali prevažne informácie nachádzajúce sa v dátovom liste ADR1000 a vysvetlili sme si význam a funkciu jednotlivých zapojení. V tejto podkapitole sa budeme venovať konkrétnemu zapojeniu pre našu aplikáciu.

Obrázok 24 zobrazuje zapojenie referencie ADR1000 pre Etalón napätia 10 V aj spolu s externými súčiastkami zabezpečujúcimi reguláciu prúdu a teploty podobne ako v obrázku 20. Oproti zapojeniu znázornenom v dátovom liste [8], sme urobili niekoľko úprav. Tranzistor *T2*, ktorý ovláda vyhrievací rezistor má kolektor pripojený na svorku 2 referencie ADR1000 čo predstavuje zápornú svorku vyhrievacieho rezistora. Z pohľadu regulácie prúdu táto zmena nemá vplyv na funkciu zariadenia. Napäťový delič určujúci teplotu vyhrievania T_{SET} je zložený z rezistorov, ktoré sú na obrázku 24 ohraničené v blokoch *R4* a *R5*. Narozdiel od obvodu v dátovom liste popísanom na obrázku 20 používame deliaci pomer $12k\Omega:1k\Omega$. Tento deliaci pomer nám z referenčného napätia 6,62 V medzi bázou a emitorom tranzistora Q2 vytvára napätie V_{BE} približne 509 mV, zároveň nastavuje teplotu vyhrievania T_{SET} na hodnotu $60 \,^{\circ}\text{C}$.

Rezistor R12 slúžiaci pre obmedzenie prúdu Zenerovej diódy bol zvolený na hodnotu $120\,\Omega$

Obr. 24: Zapojenie referencie ADR1000 pre etalón napätia 10 V. V obrázku sú vyznačené aj jednotlivé časti obvodu podľa ich funkcie, ktorá bola popísaná v predchádzajúcej kapitole.

čo nám dáva prúd Zenerovou diódou podľa rovnice 15 približne 4 mA. Rezistor *R12* je zároveň najpresnejším a najstabilnejším v celom zapojení. Jedná sa o technológiu *"Bulk Metal Foil"*, ktorá je založená na špeciálnom koncepte termo-kovového mechanického napätia, v ktorom je kovová fólia valcovaná za studena, nalepená na keramický podklad. Potom sa foto-leptaním vytvorí odporový vzor, ktorý sa laserom nastaví na požadovanú hodnotu a toleranciu [23]. Nami zvolený rezistor *R12* od firmy *Vishay Precision Group* má teplotný koeficient odporu 0.2 ppm/°C a toleranciu 0.005 %. Na bloky rezistorov R2, R3, R4 a R5 sú takisto kladené vysoké nároky preto sme použili precízne *"Thin film"* rezistory s nízkym teplotným koeficientom a toleranciu.

Ako operačný zosilňovač sme zvolili ADA4522-2 najmä z dôvodu veľmi nízkeho a stabilného offsetu (zero-drift typ) a rail to rail výstupu. Zero-drift typ nemusí byť najoptimálnejší typ

operačného zosilňovača pre túto aplikáciu, v tomto štádiu projektu sme ale nevedeli či je potrebné sústrediť sa viac na stabilitu výstupného napätia, alebo na šum.

Podobne ako v zapojení z dátového listu na obrázku 20 sme oddelili referenčnú zem AGND od uzemnenia zvyšných obvodov GND_ISO . Oddelenie je realizované pomocou rezistora R16 s odporom $0,1 \Omega$. Týmto oddelením vytvoríme vysokú izoláciu medzi uzemnením referencie a uzemnením zvyšných obvodov čím zabránime prípadnému rušeniu referencie.

4.2.1 Prispôsobenie výstupného napätia na presné dekadické hodnoty

Špecifikácia etalónu vyžaduje prispôsobenie výstupného napätia referencie $V_{REF} = 6,62$ V na štandardizované úrovne napätia 10 V, 1 V a 0,1 V. Pri prispôsobení napätia je dôležité aby nedošlo k zníženiu stability výstupného napätia v dôsledku použitia nepresných súčastí alebo nesprávnych princípov. Pre zvýšenie napätia V_{REF} na úroveň 10 V používame operačný zosilňovač, ktorý používa v spätnej väzbe rezistorovú sieť a paralelné zapojenie 4 precíznych rezistorov. Zároveň do spätnej väzby vstupuje číslicovo-analógový prevodník (DAC), ktorý slúži ako napäťový zdroj a dovoľuje nám jemne doladiť napätie na presných 10,000 000 V.

Z výstupu 10,000 000 V následne používame Hamonov napäťový delič 1:10 pre vytvorenie napätia 1 V, pričom sú do schémy zahrnuté aj neosadené rezistory X a spájkovacie mostíky *SB* (obrázok 25), ktoré nám umožňujú vykompenzovať odchýlky hlavných rezistorov v napäťovom deliči. Výstup 0,1 V je už realizovaný len jednoduchým deličom napätia 1:10 z napäťového výstupu 1 V. Túto hodnotu už nie je možné samostatne korigovať a je fixne daná. Z požiadaviek špecifikácie vyplýva aj vyvedenie referenčného napätia 10 V do kalibrátora resp. na zadný panel referencie. Toto napätie sme realizovali nezávisle od napäťového výstupu 10,000 000 V operačným zosilňovačom so zosilnením 1,5. Toto zosilnenie nám vytvára napätie približne 9,93 V, presne okrúhla hodnota referenčného napätia pre prevodník kalibrátora nie je potrebná. Menej súčiastok znamená vyššiu stabilitu tejto napäťovej vetvy.

34

Obr. 25: Schéma prispôsobenia výstupných napätí.

Prispôsobenie 10 V výstupu

Za predpokladu výstupného napätia z ADR1000 $V_{REF} = 6,62 \text{ V} (\pm 50 \text{ mV})$ je potrebné zosilnenie v rozmedzí 10/6, 67 až 10/6, 57 pre presnú hodnotu 10,000 000 V. Realizácia spätnej väzby pomocou čisto rezistorovej siete je v tomto prípade nepraktická, keďže počiatočný drift a stabilizácia ADR1000 na konštantnú hodnotu napätia trvá približne 3000 hodín. To by znamenalo, že pri použití Kelvin-Varleyho deliča napätia by sme museli po ukončení počiatočnej stabilizácie zariadenie rozobrať a daný delič korigovať zmenou deliaceho pomeru. Preto sme sa rozhodli využiť číslicovo analógový prevodník ako napäťový zdroj, ktorého výstupné napätie nastavujeme pomocou DIP prepínačov umiestnených mimo termostatu na dostupnom mieste. Pre presné nastavenie výstupného napätia 10,000 000 V, sme využili princíp znázornený na obrázku 26.

Obr. 26: Obvod pre prispôsobenie napätia na úroveň 10 V.

Schéma na obrázku 26 predstavuje efektívny spôsob pre presné doladenie výstupného napätia na hodnotu 10,000 000 V. Spätná väzba neinvertujúceho operačného zosilňovača nie je pripojená na zem, ale na malé definované napätie V_{DAC} , ktoré nastavujeme pomocou číslicovoanalógového prevodníka. Je nutné dodať, že stabilita výstupu 10,000 000 V je priamo závislá od stability korekcie pomocou DAC.

Pre zapojenie z obrázku 26 sme odvodili rovnicu výstupného napätia V_{OUT} ako funkciu napätí V_{REF} a V_{DAC} . Uvažujeme, že operačný zosilňovač má v prípade použitia spätnej väzby rovnaké napätie na neinvertujúcom aj invertujúcom vstupe, v uzle U1 je referenčné napätie V_{REF} . Ideálny operačný zosilňovač má nekonečný vstupný odpor čo znamená, že sa všetok prúd uzatvára v obvode spätnej väzby. Na základe týchto podmienok môžeme napísať rovnice prúdov v jednotlivých uzloch U a rovnice napätí v slučkách S1 a S2 podľa prvého a druhého Kirchhoffovho zákona ako:

$$S1: V_{DAC} - I_3 R_3 + I_1 R_2 + I_1 R_1 = 0$$
(16)

$$S2: -V_{OUT} + I_4 R_4 + I_3 R_3 - V_{DAC} = 0$$
⁽¹⁷⁾

$$U1: -I_4 + I_3 + I_1 \tag{18}$$

Po vyjadrení jednotlivých prúdov a dosadení do upravenej rovnice 17 dostávame výraz:

$$V_{OUT} = R_4 \frac{V_{REF}(R_1 + R_2 + R_3) + V_{DAC}R_1}{R_3 R_1} + \frac{V_{REF}}{R_1}(R_1 + R_2)$$
(19)

Dosadením konkrétnych hodnôt rezistorov z obrázka 25 dostaneme výslednú rovnicu výstupného napätia:

$$V_{OUT} = 1,508257 \ V_{REF} + 0,005525 \ V_{DAC}$$
⁽²⁰⁾

Súčin $0,005525V_{DAC}$ nám zároveň poskytuje informáciu o potrebnom rozlíšení číslicovoanalógového prevodníka. Výstupné napätie chceme korigovať až na úroveň 1 ppm čo pri našej aplikácií predstavuje približne 10 µV.

$$V_{LSB} = \frac{10\mu V}{0,005525} = 1,809955 \ mV \tag{21}$$

Výpočet v rovnici 21 hovorí o tom, že pre dosiahnutie korekcie $10 \,\mu\text{V}$ musí byť výstupné napätie prevodníka V_{DAC} pre LSB približne $1.8 \,\text{mV}$. Číslicovo-analógový prevodník rozdeľuje napäťový rozsah do *n* diskrétnych napäťových úrovní. To znamená, že ak pre prevodník použijeme referenčné napätie $V_{REF} = 6.62 \,\text{V}$, potrebujeme pre dosiahnutie $1.8 \,\text{mV}$ minimálne n = 12bitov. Pre tento účel sme vybrali prevodník LTC1597.

Obr. 27: Unipolárne zapojenie ČA prevodníka LTC1597 z dátového listu [9].

LTC1597 je 16 bitový číslicovo-analógový R-2R prevodník s prúdovým výstupom a maximálnou nelinearitou $\pm 1 \text{ LSB}$, ktorý dokáže pracovať v unipolárnom aj bipolárnom režime s referenčným napätím do $\pm 25 \text{ V}$. Pre našu aplikáciu využívame unipolárne zapojenie, zobrazené na obrázku 27. Výstupný prúd I_{OUT} je súčinom referenčného napätia V_{REF} a odporovej siete R-2R, ktorej konfigurácia je riadená pomocou 16 logických vstupov, ktoré spolu predstavujú reťazec 16 bitov. Spätnú konverziu prúdu I_{OUT} na napätie V_{OUT} dosahujeme pomocou operačného zosilňovača, ktorého invertujúci vstup je pripojený na výstup I_{OUT} prevodníka LTC1597. Prevodník má paralelný dátový vstup bez potreby strobovacích impulzov, alebo sériového programovania. Nastavenie vstupného reťazca bitov realizujeme jednoducho pomocou DIP prepínačov a pull-up rezistorov, kde logické úrovne ("0" a "1") nastavujeme pomocou prepínania jednotlivých spínačov (viď. obrázok 25).

Tabuľka 4: Výpočet výstupného napätia prevodníka na základe nastavenia binárneho reťazca.

	Logick	ý vstup		Analógový výstup V _{OUT}
predst	tavujúci	binárne	e číslo	
	v regis [.]	tri DAC		
MSB			LSB	
1111	1111	1111	1111	-V _{REF} (65535/65535)
1000	0000	0000	0000	$-V_{REF}/2 = -V_{REF}$ (32768/65536)
0000	0000	0000	0001	-V _{REF} (1/65535)
0000	0000	0000	0000	0V

Hamonov delič

Na korigovanie výstupu 1,000 000 V používame princíp Hamonovho deliča napätia, ktorý nám umožňuje dosiahnuť veľmi presný pomer rezistorov a tým pádom aj veľmi presný pomer napätí. Metóda bola popísaná v roku 1954 B. V. Hamonom [24]. Metóda sa používa na presné nastavenie deliaceho pomeru, v napäťových deličoch skladajúcich sa z rezistorov s rovnakou nominálnou hodnotou odporu. Metóda poskytuje značné potlačenie vplyvu tolerancie jednotlivých rezistorov v napäťovom deliči.

Obr. 28: Realizácia Hamonovho deliča napätia 1:10 pre výstup 1,000 000 V

Obrázok 28 zobrazuje Hamonov delič s pomerom rezistorov 1:10, kde základ deliča tvorí rezistorová sieť NOMCA s odporom jednotlivých rezistrov RNX = 10 $k\Omega$. Uvažujme príklad podľa obrázka 28, kde zmeriame hodnoty rezistorov vstupnej časti napäťového deliča RN2A = 10000,09 Ω , RN2B = 9999,95 Ω a RN2C = 9999,91 Ω . Rezistory sú zapojené v sérii, zapojenie však obsahuje spájkovacie mostíky *SB1* a *SB2*. Pre účely ďalšieho merania vyskratujeme spájkovacie mostíky, čím dostávame paralelné zapojenie reistorov RN2A, RN2B a RN2C. Celkovú hodnotu odporu vrchnej časti napäťového deliča potom vypočítame podľa vzťahu:

$$R = R_{N2A} ||R_{N2B}||R_{N2C} = \frac{1}{\frac{1}{R_{N2A}} + \frac{1}{R_{N2B}} + \frac{1}{R_{N2C}}}$$
(22)

Po dosadení hodnôt odporu, dostávame výsledok $R = 3333,328 \Omega$. To znamená, že ak chceme získať veľmi presný pomer napäťováho deliča 1:10, potrebujeme byť schopný nastaviť zostávajúci odpor deliča na hodnotu dostatočne blízku R (t.j. kombinácia (RN2D || RN2E || RN2F + R60 || R59) + R56 || R57 = 3333,328 Ω). Rezistory nachádzajúce sa v rezistorovej sieti nie je možné meniť, to znamená, že na doladenie presnej hodnoty nám zostávajú rezistory R56 a R57, ktorými v prípade potreby zvýšime hodnotu odporu a rezistory R59 a R60, ktorými môžeme naopak hodnoty znižovať.

Vysvetlenie pomocou výpočtu sme zvolili, kvôli lepšiemu znázorneniu princípu. Samotné ladenie, je však možné vykonať aj priamo, pomocou vyskratovania spájkovacích mostíkov, pripojenia napätia na vstup napäťového deliča (v našom prípade 10,000 000 V) a následného merania výstupu deliča. Kde sa ladením spodnej časti deliča, napríklad pomocou presného potenciometra s vysokým rozlíšením, snažíme dosiahnuť presne polovičné napätie zdroja (5,000 000 V) na výstupe napäťového deliča. Po dosiahnutí požadovanej presnosti následne spájkovacie mostíky rozpojíme a získavame presný deliaci pomer 1:10. [25]

Výber rezistorov

Všetky rezistorové siete vyznačené v obrázku v zelených blokoch predstavujú 8 rezistorov združených v jednom púzdre s hodnotami odporu 10 k Ω . Konkrétne sa jedná o rezistorovú sieť typu NOMCA od Vishay Precision Group s dlhodobou stabilitou $\Delta R \pm 0,015\%$, teplotným koeficientom $\pm 5 \ ppm/^{\circ}C$ a pomerovou toleranciou $\pm 0,05\%$. Odporová vrstva je vytvorená z nitridu tantalu, ktorý sa používa práve na výrobu precíznych rezistorov.

Obr. 29: Rezistorová sieť NOMCA v SMT púzdre, vrátane zobrazenia vnútornej topológie.

Keďže sa rezistory nachádzajú v spoločnom púzdre, zdieľajú aj rovnaké okolité podmienky, akými sú napríklad teplota alebo vlhkosť, ktoré vplývajú na stabilitu hodnoty odporu. To znamená, že celkový drift odporu v závislosti od vonkajších podmienok by mal mať podobný priebeh pre všetky rezistory v púzdre.

Operačný zosilňovač ADA4522

Operačný zosilňovač je použitý takmer vo všetkých súčastiach referenčnej časti etalónu, preto je vhodné popísať výber a parametre nami používaného modelu. V jednotlivých zapojeniach používame operačný zosilňovač ADA4522-2, v ktorého púzdre sa nachádzajú 2 operačné zosilňovače, to je výhodné z hľadiska šetrenia miesta na plošnom spoji čo bol takisto dôležitý faktor, pretože sme potrebovali jednotlivé súčiastky vtesnať do termostatu. Keďže pracujeme výlučne s jednosmerným napätím, zamerali sme sa hlavne na parametre akými sú rozsah napájacích napätí, šum, offset a drift výstupného napätia. Z tohto hľadiska ADA4522 ponúka možnosť unipolárneho alebo bipolárneho napájania až 55 V, pričom jej výstup je Rail-to-Rail, čo umožňuje využiť celý rozsah napätia medzi napájacími svorkami. Štandardný offset ADA4522 je 0,7 μV s driftom 22 nV/°C, táto hodnota je dostatočne nízka a teplotne stabilná na to aby nenarušila veľkosť výstupného napätia, napríklad pri zosilnení referenčného napätia. Zaujímavým parametrom je hustota šumu, ktorá je pre kvalitu výstupného referenčného napätia kľúčová. Hodnota spektrálnej hustoty šumu je 5,8 nV/\sqrt{Hz} . To predstavuje v pásme 0,1 Hz až 10 Hz približne 117 nVp-p $((5,8 \times \sqrt{10-0,1})^2/2\sqrt{2} = 117,746)$. Z hľadiska šumu existujú aj lepšie operačné zosilňovače ale v tejto fáze projektu a učiacej sa krivky sme sa sústredili hlavne na stabilitu.

4.3 Stabilizácia teploty

Napäťové referencie využívajúce princíp zenerovej diódy majú tendenciu k hysteréze. V tomto konkrétnom prípade, to predstavuje trvalé alebo dočasné skoky v napätí, zapríčinené vystavením teplote inej ako je štandardná teplota prevádzky. Veľkosť týchto skokov môže dosiahnuť až 10 ppm. Zotavenie sa referencie z napäťového skoku späť na pôvodnú hodnotu nie je veľmi podrobne preskúmanou oblasťou, avšak dostupné testy hovoria o čase až 6 mesiacov, zotavenie však nemusí prebehnúť vôbec [26]. Jav sme pozorovali aj my, viď. výsledky merania časovej stability v kapitole 6.1. Takisto ďalšie súčiastky súvisiace so stabilitou výstupného napätia etalónu, akými sú rezistory, prevodníky či operačné zosilňovače vykazujú istý drift parametrov so zmenou okolitej teploty.

Tento problém je možné odstrániť pomocou umiestnenia referenčného čipu ADR1000, jeho prídavných obvodov ale aj obvodu prispôsobenia do termostatu. Pre termostat sme zvolili teplotu 45 °C čo považujeme za bezpečnú teplotu, ktorú by okolie za normálnych podmienok nemalo prekročiť. Termostat obsahuje dva stupne izolácie, kvôli obmedzeniu úniku tepla a tým pádom aj potrebe menšieho vyhrievacieho výkonu. Prvý stupeň predstavuje vyhrievaná hliníková krabička, ktorá vo svojom vnútri uzatvára obvody referencie a prispôsobenia. Jej úlohou je vytvoriť ekvitermický objem bez teplotných gradientov a prúdov vzduchu. Druhý stupeň je plastová krabička s nízkou úrovňou výplne pre lepšiu izoláciu. Medzi prvým a druhým plášťom sa nachádzajú obvody riadenia termostatu.

41

Obr. 30: Architektúra termostatu.

4.3.1 Vyhrievanie termostatu

Základ vyhrievania tvoria 4 výkonové MOSFET tranzistory IRF530, ktoré vyhrievajú hliníkovú krabičku pomocou vlastného vyžarovaného výkonu. Gate tranzistora je pripojený na operačný zosilňovač, ktorý je riadený pomocou číslicovo-analógového prevodníka. Toto zapojenie vytvára napätím riadený prúdový zdroj zobrazený na obrázku 31.

Rezistor R slúži na meranie prúdu a definovanie maximálneho výkonu, ktorý sa bude vyžarovať na tranzistore T. Operačný zosilňovač udržuje rozdiel napätia medzi invertujúcim a neinvertujúcim vstupom veľmi blízky nule. Napätie na rezistore R bude teda rovné napätiu V_{DAC} . Prúd rezistorom R bude definovaný jednoducho pomocou Ohmovho zákona ako

Obr. 31: Napätím riadený prúdový zdroj.

 $I = V_{DAC}/R$. Výkon vyžiarený tranzistorom *T*, potom môžeme vypočítať ako:

$$P_T = V \times I - P_R \tag{23}$$

Po dosadení jednotlivých premenných a úprave dostávame výslednú rovnicu výkonu:

$$P_T = \frac{V \times V_{DAC} - V_{DAC}^2}{R}$$
(24)

Obr. 32: Kompletná schéma obvodu vyhrievania hliníkovej krabičky.

Určíme si maximálny vyžiarený výkon na tranzistore na hodnotu približne 3 W. Prvý spôsob ako dosiahnuť takýto výkon, je zväčšenie odporu rezistora R podľa rovnice 24. Ďalšou možnosťou je obmedzenie maximálneho výstupného napätia prevodníka (V_{DAC}), čo by však prinieslo stratu rozlíšenia, keďže by prevodník nepracoval v celom svojom rozsahu. Toto je možné vyriešiť umiestnením deliča napätia na výstup prevodníka čím sa zachová rozsah a zároveň obmedzí napätie. Za predpokladu použitia 10 Ω rezistora a pri známom maximálnom napätí číslicovo analógového prevodníka $V_{DAC} = 5$ V, môžeme vypočítať pomer deliča A_D podľa obrázka 32 ako:

$$A_D = \frac{R_{68}}{R_{68} + R_{55}} \tag{25}$$

Za predpokladu maximálneho výkonu 1 W môžeme celkový prúd vypočítať podľa rovnice:

$$I = \frac{1}{V} \frac{W}{V}$$
(26)

Pre výpočet výsledného pomeru použijeme rovnosť:

$$V_R = V_{DAC} \times A_D = I \times R \tag{27}$$

Po úprave získame vzťah:

$$A_D = \frac{I \times R}{V_{DAC}} \tag{28}$$

Výpočtom prúdu / a dosadením do rovnice 28 získame hľadaný pomer napäťového deliča:

$$A_D = \frac{0,0625 \times 10}{5} = 0,125 = \frac{1}{8}$$
⁽²⁹⁾

Pre vypočítaný pomer A_D sme zvolili rezistory s hodnotou $R_{55} = 6,8$ k Ω a $R_{68} = 1$ k Ω čo sa dostatočne blíži k pomeru vypočítanému v rovnici 29.

Pre korekciu teploty s dostatočnou citlivosťou používame 16-bitový, jednokanálový číslicovoanalógoví prevodník MAX5216, ktorý umožňuje komunikáciu pomocou SPI. Keďže na MAX5216 nie sú kladené vysoké nároky z hľadiska presnosti, použili sme ako referenciu napájacie napätie.

4.3.2 Meranie teploty

Ako teplotné senzory používame dva termistory, zapojené vo Wheatstonovom mostíku. Termistor mení svoj odpor v závislosti od okolitej teploty, Wheatstonov mostík mení výstupné rozdielové napätie ΔV , na základe hodnoty odporu jednotlivých rezistorov a termistorov. Teplotu termostatu môžeme merať ako funkciu ΔV .

Obr. 33: Zapojenie Wheatstonovho mostíka.

Rovnicu pre výpočet rozdielového napätia ΔV , môžeme vyjadriť ako rozdiel výstupných napätí dvoch napäťových deličov:

$$\Delta V = V_{IN} \left(\frac{R_2}{R_2 + R_T} - \frac{R_T}{R_T + R_1} \right)$$
(30)

Na meranie rozdielového napätia mostíka využívame 24-bitový, analógovo-číslicový, $\Delta\Sigma$ prevodník LTC2410, ktorý pracuje v diferenciálnom režime a počíta priamo rozdiel vstupov IN+ a IN-, pričom maximálny rozsah týchto vstupov je hodnota napájacieho napätia, v našom prípade 5V, čo v diferenciálnom režime predstavuje -2,5 V až +2,5 V.

Pre využitie celého vstupného rozsahu LTC2410, bolo nutné určiť správnu hodnotu rezistorov v mostíku. Keďže sa hodnota termistorov mení s teplotou potrebujeme poznať funkciu, ktorá túto zmenu reprezentuje:

$$R_T = R_0 \times e^{B\left(\frac{1}{T} - \frac{1}{T_0}\right)} \tag{31}$$

Pričom:

- R_T je odpor termistora pri teplote T,
- R_0 je odpor termistora pri referenčnej teplote T_0 ,
- B je materiálová konštanta termistora
- T je aktuálna teplota v stupňoch Celzia (°C)
- + T_0 je referenčná teplota, pri ktorej je známy odpor termistora zvyčajne 25 °C.

Obr. 34: Graf závislosti teploty od výstupného napätia mostíka ΔV pre hodnotu odporu rezistorov $R_1 = R_2 = 5, 1k\Omega$.

Pre našu aplikáciu sme vybrali NTC (záporný teplotný koeficient) termistor od spoločnosti TDK (B57045K), s parametrami $R_0 = 10 \ k\Omega$, $T_0 = 25 \ ^{\circ}C$ a B = 4300. Použitím rovníc 30 a 31 teda môžeme vypočítať hodnoty rezistorov v mostíku tak, aby sme využili celý rozsah prevodníka LTC2410. Pre tento účel sme použili simuláciu v programe Python, kde sme po niekoľkých pokusoch dospeli k hodnotám rezistorov v mostíku $R_1 = R_2 = 5, 1 \ k\Omega$.

Obr. 35: Schéma obvodu pre meranie teploty termostatovanej krabičky.

4.3.3 Riadenie teploty vyhrievacej krabičky

Na aktívnu stabilizáciu teploty sme použili plne digitálny PI regulátor, kde na základe meranej teploty spätná väzba riadi veľkosť vyhrievacieho výkonu.

PI regulátor je lineárny regulátor, ktorý obsahuje dve zložky korekcie chyby, proporcionálnu a integračnú. V prípade termostatu sa snažíme dosiahnuť nastavenú referenčnú teplotu na základe kompenzovania predošlých teplotných odchýlok. Proporcionálny člen reaguje na okamžitú odchýlku medzi požadovanou a skutočnou hodnotou, pričom generuje výstupný signál priamo úmerný danej odchýlke. Integračný člen reaguje na súčet historických odchýlok čím v dlhodobom časovom horizonte reguluje chybu na nulu.

Obr. 36: Principiálna schéma PI regulátora.

Dôležitou súčasťou implementácie je nájdenie hodnôt proporcionálneho a integračného koeficientu resp. zisku regulátora. Najefektívnejším spôsobom určenia koeficientov je systémová identifikácia parametrov reálneho systému, z ktorých následne môžeme koeficienty vypočítať. V našom prípade sme zvolili meranie skokovej odozvy regulátora, kde sme nastavením plného vyhrievacieho výkonu sledovali nárast teploty v čase.

Obrázok 37 zobrazuje skokovú odozvu nášho systému. Veľkosť teploty, na ktorej funkcia dosahuje maximum je približne 85 °C. Podielom teploty $\Delta T = 85^{\circ}C$ a maximálneho výkonu $P_{MAX} = 12$ W dostávame hodnotu zisku regulátora $K_c = 7,083$. Regulátor je implementovaný v mikrokontroléri ATmega328P. Celý program je pre jednoduchosť napísaný v prostredí Arduino IDE. Analógové vstupy a výstupy zabezpečujú AD prevodník LTC2410 a DA prevodník MAX5216.

Obr. 37: Skoková odozva systému.

Po inicializácií premenných a prevodníkov nasleduje slučka programu. Na začiatku slučky vždy prečítame napätie z AD prevodníka, ktoré prevedieme na teplotu. Parameter teploty potom slúži na výpočet odchýlky, ktorá predstavuje rozdiel medzi nami nastavenou hodnotou $T=45~^{\circ}\mathrm{C}$ a momentálnou teplotou. Zo získanej odchýlky a koeficientov regulátora následne vypočítame P (proporcionálnu) a I (integrálnu) zložku, ktorých súčtom získavame výstup regulátora reg_out. Maximálny výkon, ktorý dokážeme dodávať je nastavený na 12 W, preto ak je výstup regulátora väčší nanajvýš rovný 12, nastaví sa pre DA prevodník maximálne výstupné napätie. Táto podmienka je nutná, pretože ak by sme neobmedzili hranicu maximálneho výkonu, regulátor by mohol vyžadovať aj väčšie číslo ako je jeho maximum, čo by viedlo k pretečeniu. V prípade, kedy je výstup regulátora menší ako 0 nastaví nulové napätie čím sa zastaví vyhrievanie. Vo všetkých ostatných prípadoch sa DA prevodník nastavuje na hodnotu, ktorá je daná rovnicou $DAC = reg_out/P_max * 2^{16}$. Po vykonaní sa cyklus vracia k meraniu napätia a celý proces sa opakuje. V rámci programu je implementovaný aj LED indikátor stavu vyhrievania. Ten sa rozsvieti v prípade, že je odchýlka teploty od nastavenej hodnoty menšia ako 0,5 °C. Mikrokontrolér posiela po sériovej linke (UART) hodnoty premenných akými sú P zložka, I zložka, odchýlka teploty, súčasná teplota a výstup regulátora. UART je privedený aj na zadný panel etalónu, čo znamená, že s týmito dátami budeme môcť pracovať v rámci kalibrátora.

Obr. 38: Algoritmus programu regulátora teploty.

Obr. 39: Meranie skokovej odozvy regulátora teploty.

4.4 Napájanie Etalónu

Prívod energie do etalónu je realizovaný tromi spôsobmi na samostatnej doske plošných spojov. Keď je etalón pripojený do kalibrátora, napájanie je privedené na backplane konektor etalónu zo zdroja kalibrátora. Po vytiahnutí etalónu z kalibrátora je napájanie prepnuté na záložný batériový zdroj pozostávajúci z troch sériovo zapojených Li-lon batérií s kapacitou 3000 mAh. Pre prípad použitia etalónu ako samostatného zariadenia, je možné využiť nezávislý konektor, slúžiaci na pripojenie adaptéra. Napájacie napätie etalónu je 15 V s maximálnym prúdovým odberom 2 A (pri vybitých batériách a zapnutí vyhrievania z vychladnutého stavu). Odber v ustálenom stave je približne 200 mA.

Obr. 40: Bloková schéma dosky napájania.

Obrázok 40 zobrazuje blokovú schému pozostávajúcu z nabíjacieho obvodu batérií (charger) a zvyšujúceho DC-DC meniča. Na vstupe schémy sú spájkovacie plôšky slúžiace na prispájkovanie vodičov ku konektoru adaptéra, ďalšie dve spájkovacie plôšky slúžia na pripojenie LED, ktorá indikuje napájanie etalónu zo siete. Vstupná poistka v kombinácii s anti-paralelnou Schottkyho diódou slúžia ako ochrana proti prepólovaniu v prípade pripojenia adaptéra s opačnou polaritou. Napätie adaptéra je následne pripojené k obvodom nabíjača a DC-DC meniča. Výstup nabíjača sa môže nachádzať v dvoch stavoch. Prvý stav reprezentuje odpojený adaptér, čo znamená, že sa batérie nenabíjajú a slúžia ako zdroj. Po pripojení adaptéra sa aktivuje nabíjanie batérií, ktoré v tomto prípade predstavujú záťaž a neslúžia ako zdroj energie, pričom sa na výstupe *Batt* objaví napätie adaptéra. Napätie batérií a adaptéra nemajú rovnakú hodnotu preto blok DC-DC obsahuje dva nezávislé zvyšujúce meniče, kde je jeden nastavený na prevod napätia batérií a druhý na prevod napätia adaptéra. Na výstupe bloku meniča je oddelené symetrické napätie, ktoré pomocou konektora privádzame na referenčnú dosku. Na konektor privádzame aj neoddelené napätie z výstupu *Batt*, ktoré používame na vyhrievanie termostatu.

Vysvetlenie názvov jednotlivých napätí:

- +15V_ADAPT, GND Vstupné napätie z Backplane konektoru alebo adaptéra
- $\pm 16V$, GND_ISO galvanicky oddelené napätie pre obvody referencie
- Batt, GND neoddelené napätie pre obvody vyhrievania a riadenia

4.4.1 Nabíjanie batérii a obsluha záťaže

Chémia batérií je dôležitým faktorom pri výbere obvodu nabíjania. Pre našu aplikáciu sme použili Li-lon technológiu, ktorá patrí k najpoužívanejším typom chémie pri batériách. Ich hlavnou výhodou je, že majú spomedzi všetkých chemických zložení najlepší pomer kapacity k veľkosti batérie. Nevýhodou je, že ak nastane skrat v jednom z vnútorných článkov, dôjde k veľkému úniku tepla, ktoré sa šíri do ostatných článkov v batérii. Tento jav sa nazýva *"Thermal Runaway"*. Je teda dôležité dbať na správne zaobchádzanie pri nabíjaní a vybíjaní batérií. Pre etalón napätia sme zvolili batérie veľkosti 18650, ktoré dosahujú kapacitu v rozmedzí 2500 mAh až 3600 mAh. Napätie pri maximálnom nabití je 4,2 V, nominálne napätie sa rovná 3,6 V a napätie pri úplnom vybití sa pohybuje na úrovni 2,5 V. Typická vybíjacia charakteristika lítiového akumulátora je znázornená na obr. 41.

Výdrž batérie pri vybíjaní závisí aj od teploty. Vo všeobecnosti platí, že pri nižšej teplote sa batérie vybíjajú rýchlejšie.

V našom prípade nabíjanie batérií a obsluhu záťaže zabezpečuje obvod MAX1873, konkrétne verzia *S*, čo znamená, že obvod dokáže obsluhovať tri sériovo zapojené Li-Ion batérie. Maximálny možný nabíjací prúd je 4 A a rozsah vstupného napätia obvodu je 0 V až 28 V. Zapojenie obsahuje dve riadiace slučky na reguláciu nabíjacieho prúdu a napätia.

Obrázok 42 predstavuje zapojenie nabíjača MAX1873 pre etalón napätia. Na vstupe z adaptéra je sériovo radená dióda *SD1*, ktorá v prípade napájania z batérie zamedzí prechodu napätia batérie na vstupný konektor etalónu. Svorky *CSSP* a *CSSN* predstavujú kladný a záporný konektor merania celkového vstupného zdrojového prúdu I_{IN} . Obmedzenie celkového

Obr. 41: Charakteristika vybíjania lítiových batérií.

prúdu je nastavené pomocou rezistora R2 podľa rovnice:

$$I_{IN} = \frac{0,1 V}{R2} = \frac{0,1 V}{0,068 \Omega} = 1,471 A$$
(32)

Ako je už spomenuté v úvode kapitoly, v prípade nabíjania batérií sa napätie na výstupe *Batt* rovná napätiu na vstupe resp. napätiu adaptéra. Batéria v tomto prípade nedodáva energiu do obvodu ale je nabíjaná, pomocou znižujúceho DC-DC meniča, zloženého z P-kanálového MOSFET tranzistora *Q1*, antiparalelnej diódy *SD2* a cievky *L1*. Za meničom je radený rezistor *R5*, ktorý slúži na obmedzenie maximálneho nabíjacieho prúdu I_{CHRG} podľa rovnice:

$$I_{CHRG} = \frac{0,2 \ V}{R5} = \frac{0,2 \ V}{0,200 \ \Omega} = 1 \ A \tag{33}$$

Rezistor *R5*, je zároveň pripojený k svorkám *CSB* a *BTR* v konfigurácií bočníka. Toto meranie slúži pre monitorovanie nabíjacieho prúdu, čo sa prejavuje na výstupnej svorke *IOUT* podľa vzťahu:

$$V_{IOUT} = 20 \ (V_{CSB} - V_{BTR})$$
 (34)

V našej konfigurácii používame výstup *IOUT* spolu s LED ako indikátor nabíjania. Maximálny prúd $IOUT = 500 \mu A$, však nie je dostačujúci na rozsvietenie LED, preto sme k obvodu pripojili N-MOSFET ako prúdový buffer.

Obr. 42: Schéma zapojenia obvodu MAX1873.

Obr. 43: Graf regulácie nabíjacieho prúdu a napätia batérie počas nabíjania.

Za rezistorom *R5* je radený ďalší P-MOSFET tranzistor *Q* pripojený k integrovanému obvodu MAX8212, ktorý slúži na odpojenie batérií pri podpätí. V prípade odpojenia adaptéra sa nabíjanie zastaví a batérie sa stanú zdrojom energie pre celý etalón, čo znamená, že výstup obvodu *Batt* je rovný napätiu na batériách, ktoré je pri plnom nabití približne 12,6 V. Na ceste medzi batériami a výstupom máme 2 tranzistory a niekoľko ďalších prvkov, na ktorých vzniká úbytok napätia. Tento úbytok predstavuje približne 0,77 V, čo je dôležitá informácia pre určenie vypínacieho napätia. Výstupné napätie *Batt* je cez napäťový delič, zložený z rezistorov *R20, R21* a *R27*, pripojené k MAX8212. Tento delič musí byť vypočítaný tak, aby požadované vypínacie napätie privedené na svorku *THRESH* bolo nižšie ako 1,15 V. V našom prípade sme vypínacie napätie batérií určili na hodnotu 10,05 V. Pre dosiahnutie napätia 1,15 V na svorke *THRESH* je potrebný deliaci pomer 1,15 V/10,05 V = 0,1143. [27] [28].

4.4.2 Transformácia napájacieho napätia

Väčšina obvodov etalónu pracuje s napájacím napätím +15 V. Toto napätie vieme spoľahlivo dosiahnuť pri napájaní etalónu z adaptéra, avšak pri napájaní z batérií je maximálne napätie 12,6 V, čo pre obvody referenčnej dosky nie je postačujúce. Na doske referencie sa navyše nachádzajú nízkošumové lineárne stabilizátory, ktoré pri 15 V výstupe požadujú o niečo vyššie vstupné napätie. Preto je potrebné napätie batérií aj napätie z adaptéra transformovať na vyššie hodnoty ako +15 V. Výstupné napätie dosky napájania zároveň nesmie presiahnuť 20 V, pretože by sa prekročil limit maximálneho vstupného napätia lineárnych stabilizátorov na doske referencie.

Pre účel zvýšenia napätia sme použili integrovaný obvod LT3439, ktorý v kombinácií s transformátorom predstavuje topológiu "Push-Pull" zvyšujúceho DC-DC meniča. Princíp "Push-Pull" v stručnosti predstavuje dva spínače pripojené na primárne vinutie symetrického transformátora, ktorých spínaním meníme polaritu vstupného DC napätia a tým pádom nám vzniká striedavý priebeh, ktorý je možné transformovať. Pri LT3439 je výstup na svorkách *COL A* a *COL B*, ktoré predstavujú kolektor spínacích tranzistorov. Výstupné transformované napätie je potom usmernené, pomocou dvojcestného usmerňovača. Rýchlosť zmeny, medzi kladnou a zápornou špičkou (*slew rate*) obvodu LT3439, je riadená pomocou rezistorov *R12* a *R16* [29]. Keďže sme napájanie rozdelili na výkonovú (vyhrievanie) a referenčnú časť, neprekročíme ani maximálny povolený prúd meniča 1 A. Ako jadro transformátora sme zvolili feritový toroid B64290L0651 od spoločnosti TDK. Použitie transformátora je výhodné kvôli

Obr. 44: Schéma meničov napätia.

nízkemu vedenému aj vyžarovanému rušeniu a takisto galvanickému oddeleniu a teda izolácii napájania.

Keďže sa napätia adaptéra a batérií navzájom nerovnajú, použili sme dva meniče (na obrázku 44 vyznačené ako IC2 a IC3) s rôznym transformačným pomerom, pričom je vždy aktívny len jeden z nich. V prípade napájania z adaptéra je aktívny menič *IC2*, pričom vypnutie *IC3* sme docielili pripojením svorky *SHDN* na zem cez tranzistor *IC4*. Primárne vinutie transformátora *TR1* je 9 závitov a jeho sekundárne vinutie obsahuje 11 závitov čo predstavuje transformačný pomer $P_1 = 1, 22$. Za predpokladu, že vstupné napätie adaptéra je 15 V, výstupné napätie na sekundárnom vinutí transformátora *TR1* bude 18,3 V.

Pri napájaní etalónu z batérií je obvod *IC2* deaktivovaný, pretože sa na vstupe adaptéra (v schéme označeného ako *Adapter*) nenachádza žiadne napätie (vďaka dióde *SD1* na obrázku 42). V tomto prípade je teda aktívny len obvod *IC3*, ktorého transformátor má na primárnom vinutí 7 závitov a na sekundárnom vinutí 11 závitov. Podielom sekundárneho a primárneho vinutia dostávame transformačný pomer $P_2 = 1,571$. Pri plnom nabití batérií 12,6 V, je napätie na sekundárnom vinutí $12, 6 V \times 1,571 = 19, 8 V$. Minimálne napätie, ktoré môžeme z batérií odoberať je 10,05 V, čo nám pri vypočítanom transformačnom pomere P_2 dáva napätie 15,793 V na sekundárnom vinutí.

Po transformácií je napätie usmernené dvojcestným usmerňovačom pričom usmerňujeme a kladnú aj zápornú polvlnu, čoho výsledkom je symetrické jednosmerné výstupné napätie v

rozmedzí +15,8 V až +19,8 V a -15,8 V až -19,8 V. Na výstupe sú navyše paralelne pripojené kondenzátory, ktoré slúžia ako zotrvačnosť pre lepšie usmernenie a filtráciu.

4.4.3 Backplane konektor

Na doske napájania sa nachádza aj 48 svorkový Backplane konektor, ktorý slúži na prívod napájania z kalibrátora a naopak na prenos UART komunikácie a referenčného napätia do kalibrátora.

Obr. 45: Schéma zapojenia backplane konektora.

Keďže nepoužívame všetky svorky konektora, pripojili sme každý jednotlivý signál na tri vedľa seba sa nachádzajúce svorky. Konfigurácia signálov na konektore je zároveň dôležitá aj pre pripojenie do kalibrátora. Kalibrátor obsahuje viacero zásuvných modulov, ktorých konektory bude spájať doska plošných spojov. Preto je dôležité vopred premyslieť rozdelenie signálov na backplane konektore aby na doske nedošlo ku kríženiu napríklad výkonových a logických signálov.

4.4.4 Regulácia napätí

Po transformácii a usmernení, prenášame napätia z dosky napájania na dosku referencie, kde jednotlivé napätia upravujeme pomocou lineárnych stabilizátorov LT3045 a LT3094 na presné a stabilné hodnoty potrebné pre napájanie jednotlivých prvkov referenčnej dosky. LT3045 slúži na stabilizáciu kladných napätí s vstupným rozsahom 1,8 V až 20 V a výstupným rozsahom

0 V až 15 V. LT3094 je ekvivalent pre záporné vstupné a výstupné napätia. Oba integrované obvody sa vyznačujú nízkym šumom a potlačením zákmitov v napätí zdroja [30].

Obr. 46: Vstupné napätia referenčnej dosky.

Obrázok 46 zobrazuje napätia, ktoré sme priviedli na dosku referencie z dosky napájania:

- +16V_ISO, GND_ISO, -16V_ISO Galvanicky oddelené napätia pre napájanie referenčných obvodov
- BATT, GND Neoddelené napätia z adaptéra alebo batérií pre napájanie vyhrievania a riadenia

Pre napájanie citlivých obvodov referencie a prispôsobenia referenčného napätia, potrebujeme stabilné hodnoty +15 V, -15 V a +5 V. Pre tieto využívame galvanicky oddelené napätia privedené z dosky napájania $+16V_ISO$, GND_ISO, $-16V_ISO$.

Obr. 47: Schéma lineárnych stabilizátorov pre galvanicky oddelené napájacie vetvy.

Na obrázku 47 je zobrazené zapojenie stabilizátorov, ktoré upravujú vstupné napätia na hodnoty +15 V, -15 V a +5 V. Výstupné napätie stabilizátorov je nastavené pomocou rezistorov pripojených na svorku *SET* integrovaného obvodu. Pripojením rezistora R_{SET} na svorku *SET*, ktorá predstavuje precízny prúdový zdroj $I_{SET} = 100\mu$ A, nastavíme výstupné napätie stabilizátora V_{SET} podľa rovnice:

$$V_{SET} = I_{SET} R_{SET} \tag{35}$$

Pre výkonovú časť referencie, používame neoddelené napájanie [BATT, GND]. Na tranzistory a operačné zosilňovače, ktoré zabezpečujú vyhrievanie termostatu, pripájame priamo napätie adaptéra resp. batérií (obrázok 32). Keďže je celý termostat, vrátane vyhrievania aj merania teploty riadený spoločne, musia byť aj riadiace logické obvody pripojené na spoločný zemný potenciál *GND*. Na obrázku 48 je znázornené zapojenie stabilizátora, ktorý vytvára napájacie napätie pre riadiace obvody $+5V_BATT$.

Obr. 48: Schéma lineárneho stabilizátora s neoddeleným vstupným napätím, pre napájanie riadiacich obvodov termostatu.

4.5 Aspekty návrhu dosiek plošných spojov a mechanická integrácia

Pri návrhu sme používali 4 vrstvovú dosku plošných spojov v rozmere eurokarty 22 cm \times 10 cm. Doska referencie obsahuje termostat, preto sme sa snažili obvody referencie a prispôsobenia referenčného napätia umiestniť na čo najmenšiu plochu, aby nám ostal priestor na umiestnenie tepelnej izolácie resp. hliníkovej a plastovej krabičky. Na obrázku 49 si môžeme všimnúť, že ostrov referenčných obvodov je elektricky aj tepelne izolovaný od zvyšných obvodov na doske. Jedinými vodičmi vstupujúcimi na ostrov referencie, sú napájacie napätia a vodiče k pull-up rezistorom DA-prevodníka LTC1597, ktoré sme umiestnili mimo hliníkovej krabičky kvôli šetreniu miesta. Vodiče, ktoré vedú popod steny hliníkovej krabičky sú vedené v dvoch vnútorných vrstvách. Vo vnútorných vrstvách plošného spoja, sa nachádzajú aj polygóny pre napájacie napätie +15V a GND_ISO.

Obr. 49: Doska plošných spojov pre obvody referencie (horná vrstva - červená, stredná vrstva 1 - béžová, stredná vrstva 2 - belasá, spodná vrstva - modrá).

Ostrov referencie je následne uzavretý v hliníkovej krabičke, ktorej vrchný diel je pripevnený k plošnému spoju pomocou dier *MH1*, *MH2*, *MH3*, *MH4* a skrutiek. Na nákrese vrchného dielu krabičky z obrázku 50, môžeme vidieť aj výčnelky, ktoré prechádzajú doskou plošných spojov a následne je k nim pripojený spodný diel hliníkovej krabičky.

Obr. 50: Nákres vrchného dielu hliníkovej krabičky.

Obr. 51: Nákres spodného dielu hliníkovej krabičky.

Do spodného dielu je vyfrézovaný výrez (obrázok 51), pretože sa na spodnej vrstve plošného spoja nachádza rezistorová sieť, ktorá sa nesmie dotýkať hliníkovej časti.

Obr. 52: 3D zobrazenie oboch častí hliníkovej krabičky.

Ďalšiu izolačnú vrstvu termostatu vytvára plastová krabička, ktorá sa rovnako ako hliníková skladá z vrchnej aj spodnej časti (obr. 53 a obr. 54), čo zabezpečuje dodatočnú tepelnú izoláciu vďaka ktorej sa vyhneme teplotným gradientom a vzniku termoelektrického napätia, ktoré by mohlo narušiť referenčné napätie. Medzi hliníkovú a plastovú časť sme umiestnili obvody termostatu akými sú prevodníky, tranzistory, termistrory a pull-up rezistory.

Obr. 53: 3D model vrchného dielu plastovej krabičky. Obr. 54: 3D model spodného dielu plastovej krabičky.

Pre vývod už prispôsobených referenčných napätí z vnútra termostatu, využívame spájkovacie plôšky, z ktorých sú vyvedené vodiče cez otvory v hliníkovej a plastovej krabičke až na výstupné konektory etalónu. Ako výstupné konektory používame telúr-medené, pozlátené konektory od firmy Pomona electronics (obr. 55) typ 3770, navrhnuté pre nízke termoelektrické napätia.

Obr. 55: Výstupný konektor etalónu, Pomona electronics typ 3770.

Na obrázku 56 môžeme vidieť rozloženie lineárnych stabilizátorov napätia, LT3045 a LT3094, na plošnom spoji. Keďže sa jedná o obvody, ktoré do ostatných častí referenčnej dosky distribuujú výkon, umiestnili sme na vrchnú a spodnú vrstvu polygóny slúžiace na lepší odvod tepla. Polygóny sú navzájom spojené pomocou *via* prepojení, vďaka čomu sa teplo odvádza rovnomerne na obidve vrstvy. Samotné obvody LT3045 a LT3094 obsahujú podložky na odvod tepla, ktoré sú rovnako spojené s polygónmi. Podložky na odvod tepla nie sú pasívne, pri LT3045 sa na podložke nachádza zemný potenciál, pri LT3094 sa na podložke nachádza vstupný potenciál obvodu.

Obr. 56: Konfigurácia polygónov pre lepšie chladenie lineárnych stabilizátorov.

Obr. 57: Celková architektúra referenčnej dosky.

Doska napájania obsahuje rozmerné súčasti akými sú držiaky batérií, transformátory, kondenzátory a backplane konektor. Preto bolo dôležité navrhnúť správne rozmiestnenie daných súčastí, napríklad kvôli praktickému prenosu signálov na referenčnú dosku alebo zabráneniu kolízií so súčasťami referenčnej dosky.

Obr. 58: Doska napájania.

Obe dosky plošných spojov sú vložné do zásuvného modulu, ktorý sa vsunie do kalibrátora napätia a prúdu. Dosky sú do zásuvného modulu vložené paralelne oproti sebe (obrázok 59) pričom je doska referencie primontovaná na dištančných sĺpikoch, kvôli vytvoreniu miesta pre

spodný diel termostatu. Doska napájania je primontovaná na koľajnice na opačnej strane. Na zadnom paneli zásuvného modulu je vyfrézovaný otvor pre backplane konektor. Predný panel obsahuje konektory, LED indikátory a popisky ako je zachytené na obrázku 60.

Obr. 59: Integrácia elektroniky referencie do zásuvného modulu. Zelená krabička je 3D vytlačená tepelná izolácia.

Obr. 60: Predný panel zásuvného modulu.

5 Realizácia prvého prototypu a výsledky testovania

Prvý prototyp sme osadzovali a testovali v laboratóriu skupiny vysokofrekvenčných systémov CERN v auguste 2023. Pri postupnom osádzaní súčiastok a oživovaní dosiek sme prišli na technické problémy, ktoré bolo potrebné pochopiť, navrhnúť riešenie a otestovať či bolo účinné. Prvá verzia dosky referencie neobsahovala výstup 0,1 V, nachádzal sa na nej backplane konektor a napájanie výkonového a referenčného obvodu nebolo oddelené, čo zapríčinilo hneď niekoľko problémov.

5.1 Presluch cez spoločnú (zemnú) impedanciu

Po osadení dosky referencie sme DIP prepínačmi nastavili výstupné napätie na hodnotu 10,000 000 V presne. Následne sme na dosku namontovali vyhrievaciu krabičku a osadili výkonové obvody vyhrievania. Pri následnom meraní výstupného napätia 10,000 000 V dosky referencie sme zaznamenali náhly pokles napätia na úrovni 1,8 mV, čo je výrazne viacej ako by sme pre referenciu tejto kvality očakávali. Tento pokles sme systematicky pozorovali vždy na konci počiatočného vyhrievania termostatu, kedy mal obvod najväčší prúdový odber. Po ustálení vyhrievania resp. znížení odoberaného prúdu napätie dosiahlo nominálnu hodnotu a už sa výrazne nemenilo. Meranie je zachytené na obrázku 61.

Obr. 61: Skok výstupného napätia referencie po dosiahnutí nominálnej teploty termostatu.

Prúd odoberaný zo zdroja, počas počiatočného vyhrievania je podľa obrázku 62 približne

830 mA. Pôvodne nastavené referenčné napätie 10,000 000 V pokleslo na hodnotu 9,998 204 V. Po vyhriatí sa termostat stabilizuje na odoberanom prúde približne 51 mA. Analýzou návrhu dosky plošného spoja sme zistili, že vyhrievací prúd je privedený do zemnej referenčnej roviny pod precíznou časťou referencie. Po ukončení vyhrievania sa výrazne zníži aj prúd pretekajúci zemným polygónom, čo má za následok zníženie úbytku napätia na spoločnej zemnej impedancii (obr. 63).

Obr. 62: Meranie výstupu 10,000 000 V počas počiatočného vyhrievania termostatu.

Obr. 63: Meranie výstupu 10,000 000 V po počiatočnom vyhriatí termostatu.

Problém bol identifikovaný ako učebnicový príklad realizácie presluchu na spoločnej impedancii. Náš etalón tak zanechal impakt aj v renomovanej inštitúcii ako je CERN. Doc. Valúch používa tento príklad vo svojich EMC kurzoch pre zamestnancov CERNu.

Presluch od spoločnej zeme vzniká v prípade, že dva obvody zdieľajú spoločnú dráhu pre návratový prúd, pričom má dráha nezanedbateľnú impedanciu. Modelový prípad je znázornený na obrázku 64, kde sa prúdy vo vetvách obsahujúcich zdroje V_{S1} a V_{S2} spájajú do návratovej cesty s impedanciou Z_G . Následkom tohto spojenia je, že napätie V_{L1} na záťaži R_{L1} je ovplyvnené návratovým prúdom I_2 . Rovnakým spôsobom je potom ovplyvnené aj napätie V_{L2} prúdom I_1 [31]. Vzájomné ovplyvnenie obvodov môžeme vyjadriť matematicky pomocou 2. Kirchhoffovho zákona, kde výsledné napätie na záťaži vypočítame ako:

$$V_{L1} = R_{L1}I_1 + Z_G(I_1 + I_2)$$
(36)

$$V_{L2} = R_{L2}I_2 + Z_G(I_1 + I_2)$$
(37)

Obr. 64: Obvod v znázorňujúci presluch od spoločnej zemnej impedancie.

Presluch od spoločnej zeme sa stáva problémom z hľadiska elektromagnetickej kompatibility ak viac obvodov zdieľa spoločnú návratovú cestu s nenulovou impedanciou a zároveň je splnená aspoň jedna z nasledujúcich podmienok:

- zemná impedancia má na vysokých frekvenciách príliš vysokú indukčnosť alebo príliš vysoký odpor na nízkych frekvenciách
- spoločnou zemou preteká príliš vysoký prúd
- veľmi citlivý, nízko šumový obvod zdieľa spoločnú zem s iným obvodom

Obr. 65: Nesprávne pripojenie výkonového vyhrievacieho obvodu na referenčnú rovinu presnej časti obvodu.

5.2 Problémy s prispôsobením výstupného napätia

V kapitole 4.2.1 sme predstavili princíp prispôsobenia výstupného napätia 10,000 000 V pomocou DA prevodníka LTC1597 v spätnej väzbe operačného zosilňovača. Prevodník je napájaný kladným napätím, avšak v dátovom liste prevodníka sme prehliadli, že výstupné napätie obvodu v našej konfigurácii bude záporné (obrázok 27). Pre záporný napäťový výstup je teda potrebné aj záporné napájanie výstupného operačného zosilňovača. Prvá verzia referenčnej ani napájacej dosky neobsahovala záporné napájacie napätie, čo malo za následok nesprávnu funkciu korekcie výstupu 10,000 000 V.

Aby sme mohli pokračovať vo vývoji, vyskúšali sme potenciálne riešenie s materiálom, ktorý bol k dispozícii. Pomocou troch rezistorových sietí sme zostavili Kelvin-Varleyho delič napätia pre dostavenie výstupu na presnú hodnotu 10,000 000 V pomocou obvodu, ktorý nepotrebuje záporné napájacie napätie. Obvod je zobrazený na obrázku 66. Obvod je síce funkčný, ale presné nastavenie výstupného napätia je komplikované. Preto sme variantu Kelvin-Varley zavrhli a radšej našli spôsob a implementovali záporné napájacie napätie pre operačný zosilňovač.

Obr. 66: LT Spice simulácia Kelvin-Varleyho deliča pre presné dostavenie 10,000 000 V.

5.3 Preťaženie Protitaktných DC-DC meničov

V prvom prototype nebolo napájanie etalónu rozdelené na výkonovú a referenčnú časť. Všetok výkon, potrebný na napájanie referenčných obvodov aj vyhrievanie termostatu tiekol jednou vetvou napájania cez DC-DC meniče. Ak sme chceli rozumný vyhrievací výkon termostatu pre rýchlu odozvu, celkový odber spôsobil prekročenie prúdového limitu meničov LT3439.

Problém sme vyriešili rozdelením obvodu napájania na galvanicky oddelenú časť pre obvody referencie a priamo pripojenú časť vyhrievania. Problém s preťažením sme vyriešili, ale založili sme si na nový...

5.4 Únikový prúd

Únikový prúd je dôležitý parameter každého meracieho prístroja. Ide o prúd, ktorý typicky vzniká parazitnou kapacitnou väzbou medzi meracími obvodmi prístroja a jeho napájacou časťou. V prípade menej kvalitného zdroja, bez ohľadu na to či ide o klasický 50 Hz transformátor, alebo vysokofrekvenčný spínaný zdroj, sa rušivé napätie cez parazitné kapacity naviaže na obvody meracieho prístroja vo forme súhlasného módu. Celý merací obvod pláva na naviazanom striedavom potenciáli. V momente kedy sa obvod meracieho prístroja pripojí ku externému meranému obvodu vytvoríme pre súhlasný mód impedanciu, ktorou začne z prístroja vytekať parazitný, tzv. únikový prúd. V oblasti precíznej meracej techniky predstavuje únikový prúd zásadný problém, a žriedlo mluna mierospyteckej akosti [32] nie je žiadnou výnimkou. V pôvodnom návrhu bol celý obvod referencie, vrátane vyhrievania napájaný cez DC/DC meniče s dobrou izoláciou, čo malo zabezpečiť nízky únikový prúd. Ako sa pri testovaní ukázalo, dva zásadné problémy - presluch cez spoločnú impedanciu (viď. sekcia 5.1) a preťaženie DC/DC meničov (viď. sekcia 5.3) zmenili pôvodný koncept. Vyhrievací systém je teraz priamo pripojený na neoddelený napájací zdroj a vyhrievacia krabička, v ktorej je kompletne uzavretá celá precízna časť elektroniky je priamo pripojená ku zdroju (backplane, adaptér, batéria). Elektronika je teda vystavená potenciálnemu kapacitne naviazanému rušeniu zo zdroja.

Obr. 67: Principiálne zapojenie osciloskopu pre účel merania únikového prúdu.

Pri prevádzke z batérií, alebo kvalitného zdroja (referencia zasunutá v kalibrátore) toto nepredstavuje problém. Pri použití externého adaptéra 230 V/15 V sme ale namerali únikový prúd na úrovni desiatok μA_{pk} , čo je pre prístroj tejto triedy neakceptovateľné. Vzhľadom na to, že všetka elektronika je plávajúca, rozhodli sme sa problém vyriešiť spojením GND potenciálu vyhrievacieho obvodu ku šasi zásuvného modulu. Vyhrievacia krabička, pripojená na tento potenciál taktiež poskytuje dvojitú ochranu pre precíznu elektroniku, ktorá teraz okolo seba "vidí"potenciál chassis celého prístroja.

Pripojenie sme zrealizovali pomocou rezistora s hodnotou desiatok $k\Omega$, čo zásadne znížilo hodnotu únikového prúdu na hodnotu približne 200 nA_{pk} . Priebeh zostávajúceho únikového prúdu je zdokumentovaný na obr. 68. Ako finálnu hodnotu sme zvolili 2, 2 $k\Omega$, čím sa únikový prúd znížil na 40 nA_{pk} čo je veľmi dobrý výsledok. Obvody napäťovej referencie sú stále plne plávajúce voči chassis aj napájacím zdrojom etalónu.

Obr. 68: Meranie únikového prúdu etalónu po úprave. Mierka x-os 20 ms/dielik, y-os 100 mV/dielik, vstupný odpor 1 $M\Omega$.

5.5 Odstránenie nedostatkov

Presluchu od spoločnej zeme a zároveň preťaženiu DC-DC meničov sme sa vyhli pomocou rozdelenia napájania na výkonovú a referenčnú časť a kompletnému prenavrhnutiu plošných spojov. Obvod vyhrievania termostatu skladajúci sa z operačného zosilňovača a MOSFET tranzistorov je pripojený priamo na napätie adaptéra. Prevodníky spolu s mikroprocesorom sú pripojené na rovnakú zem, avšak napätie adaptéra je upravené cez lineárny stabilizátor, ktorý upravuje toto napätie na 5 V. Obvody referencie a prispôsobenia sú napájané zo sekundárnych vinutí transformátorov, čo zabezpečuje galvanické oddelenie, zároveň tečie väčšina prúdu oddelenou vetvou priamo k tranzistorom čím sa vyhneme preťaženiu DC-DC meničov LT3439.

Keďže pre výstupný operačný zosilňovač prevodníka LTC1597 potrebujeme záporné napájanie, implementovali sme na sekundárne vinutie transformátorov dvojcestný usmerňovač s opačnou polaritou diód, čím sme získali symetrické výstupné napätie.

Počas úprav sme sa z praktických dôvodov rozhodli premiestniť backplane konektor z referenčnej dosky na dosku napájania. Touto zmenou privedieme napájanie z backplane konektoru priamo na dosku napájania, miernou nevýhodou však je, že budeme musieť preniesť referenčné napätie pre kalibrátor na dosku napájania aby sme ju následne mohli priviesť na backplane konektor.

Prvá verzia etalónu obsahovala len dve výstupné referenčné napätia, ktorými boli 10,000 000 V a 1,000 000 V. Počas dodatočných úprav a vylepšení sme sa rozhodli pridať aj ďalší výstup, ktorým bolo napätie 0,100 000 V. Etalón neobsahuje výstup 1,018 V.

5.6 Osadenie a prvé zapnutie finálnej verzie etalónu na FEI

Po úpravách a opätovnom vyrobení súčastí etalónu sme zložili finálnu verziu v laboratóriu na FEI. Stojí za spomenutie, že finálna verzia elektroniky je verzia 2, t.j. všetky problémy prvého prototypu boli riadne zdokumentované a riadne opravené.

Na osadenie dosiek sme použili olovnatú cínovú pastu, ktorú sme naniesli pomocou šablóny a následne na ňu uložili SMD súčiastky. Dosku s uloženými SMD súčiastkami sme vložili do pretavovacej pece značky Eurocircuits-reflow-mate, kde sme nastavili odporúčaný teplotný profil. Výhodou pečenia oproti štandardnému spájkovaniu je, že pri pečení sú všetky súčasti vystavené rovnakej teplote, čo zabraňuje napríklad vzniku mechanických napätí a následnému nerovnomernému driftu presných rezistorových sietí, alebo poškodeniu súčiastok v dôsledku prehriatia. Pri správnom nanesení cínovej pasty a pečení plošného spoja sa pasta rozloží po spájkovacej plôške rovnomerne a len zriedkavo vznikajú studené spoje, alebo skraty. Po vybratí plošného spoja z pece sme pod mikroskopom skontrolovali kvalitu pretavených spojov a osadili zvyšné THT súčiastky spolu s vodičmi, ktoré vyvádzajú prispôsobené referenčné napätia von z termostatu. ADR1000 sme osadili veľmi opatrne ručne.

Obr. 69: Detail obvodu referencie.

Pred montážou súčastí termostatu sme overili funkčnosť elektroniky referencie. Pre napájanie sme použili jednosmerný, symetrický laboratórny zdroj AIM-TTI Instruments CPX400DP. Kde sme nastavili napájacie napätie približne 16 V kvôli lineárnym stabilizátorom. Na spájkovacie plôšky výstupných napätí etalónu, sme pre jednoduchosť merania prispájkovali nožičky. Na nožičky sme pripevnili sondy referenčného multimetra Fluke 8588A, pričom sme multimeter nastavili na rozsah 10 V a rozlíšenie 8,5 platných miest. Po zapnutí zdroja bol odber referencie približne 50 mA čo bola očakávaná hodnota, pričom multimeter zobrazoval hodnotu blízku 10 V. Následne sme vyskúšali funkčnosť korekcie výstupného napätia pomocou spínania DIP prepínačov od najvyššieho bitu (MSB) až k najnižšiemu (LSB). Počas prepínania sa výstupné referenčné napätie menilo podľa očakávania, čo nám umožnilo skorigovať hodnotu na presných 10,000 000 V. Ako bolo popísané v kapitole 4.2, po prvom zapnutí referencie môže stabilizácia výstupného napätia ADR1000 trvať až 3000 hodín, čo znamená, že bude výstupné napätie potrebné znovu korigovať po ukončení počiatočnej stabilizácie.

Obr. 70: Prvé overenie funkčnosti elektroniky referencie.

Po overení funkčnosti nasledovala montáž hliníkovej vyhrievacej krabičky, ku ktorej sme priskrutkovali termistory a tranzistory, pričom v miestach kontaktu kovov sme naniesli teplovodivú pastu. Chladič tranzistora je spojený s drainom, preto sme pod chladič vložili izolačné podložky

Poslednou súčasťou referenčnej dosky bola vonkajšia vrstva tepelnej izolácie vo forme plastovej 3D vytlačenej krabice. Detaily návrhu plastovej krabice vrátane zloženia je bližšie popísaný v kapitole 4.5.

Osádzanie dosky napájania prebiehalo podobne ako pri doske referencie, kde sme po nanesení cínovej pasty cez šablónu uložili SMD súčiastky a použili pretavovaciu pec. Následne sme

Obr. 71: Osadená doska referencie pred montážou vyhrievacej krabice. Obr. 72: Doska referencie, pohľad zo spodnej strany plošného spoja.

Obr. 73: Doska referencie s nainštalovanou vyhrievacou krabicou.

osadili THT súčiastky a vodiče pre signalizačné LED, ktoré budú pripevnené na predný panel zásuvného modulu. Najviac časovo náročnou činnosťou, bolo pri doske napájania navíjanie transformátorov pomocou tenkého vodiča (obr. 75). Po kompletizácii osádzania boli vykonané úvodné testy dosky, pri napájaní z adaptéra alebo napájanie z batérií, kde sme overili hodnoty výstupného napätia na sekundárnych vinutiach transformátorov, prepínanie napájania medzi adaptérom a batériami ale aj vypínací podpäťový obvod MAX8281.

Po osadení a testoch sme obe dosky plošných spojov primontovali do zásuvného modulu. Posledným krokom oživovania etalónu bolo nahrávanie programu do mikroprocesora ATMEGA328P. Z mikroprocesora máme vyvedených niekoľko vstupných a výstupných svoriek, konkrétne napájanie (+5V, GND), UART (RX, TX), MISO a MOSI pre SPI komunikáciu, reset, hodiny (SCLK) a chipselect (CS), slúžiaci pre výber prevodníka s ktorým chce SPI práve komunikovať. Niektoré svorky sú vyvedené len pre diagnostické účely. Pre nahrávanie programu sme najprv pripojili externé Arduino NANO (v režime master) k vyvedeným svorkám mikroprocesora ATMEGA328P (v režime slave) v konfigurácií znázornenej na obrázku 76. Predtým ako

Obr. 74: Detail nainštalovanej vyhrievacej krabičky na doske referencie.

bolo možné nahrať riadiaci program etalónu, bolo potrebné do procesora ATMEGA328P napáliť takzvaný zavádzací program (bootloader). Po napálení zavádzacieho programu sme nahrali riadiaci softvér etalónu. Celý proces bol realizovaný pri vypnutom etalóne pričom potrebné napájanie mikroprocesora ATMEGA328P zabezpečovalo Arduino NANO.

Po pripojení etalónu do elektrickej siete začal PI regulátor s vyhrievaním termostatu, pričom sme proporcionálnu zložku, integračnú zložku, výkon a teplotu sledovali graficky v reálnom čase pomocou sériovej komunikácie a python kódu. Regulátor bol výborne odladený a pri dosiahnutí teploty 45°C sa okamžite stabilizoval bez akýchkoľvek oscilácií, či dokonca prekmitu. Riadiaci program zabezpečuje okrem PI regulátora aj riadenie LED. Pokiaľ je odchýlka teploty menšia ako 0,5 °C dióda svieti, čo slúži ako indikátor stabilizovanej teploty regulátora. Poslednou kontrolou bolo zmeranie signálov na backplane konektore, kde sme úspešne namerali komunikáciu mikrokontroléra ako aj referenčné napätie \approx 10 V, ktoré má slúžiť ako referencia pre DA prevodník kalibrátora napätia a prúdu.

Skompletizovaný etalón napätia sme následne pripojili k referenčnému mnohomeru Fluke 8588A za účelom merania dlhodobej stability a počiatočného driftu etalónu. Mnohomer bol nastavený na rozsah 10 V, rozlíšenie 8,5 platných miest, integračný čas 10 s (500 NPLC). Po nastavení parametrov sme spustili funkciu analyze (obr. 78), ktorá ukladá do pamäte vzorku vždy po uplynutí integračného času, pričom sme meranie nechali spustené celý víkend. Dáta z dlhodobých meraní je možné preniesť do počítača pomocou USB rozhrania, čo nám umožňuje následnú analýzu vzoriek (obr. 80). Meranie bolo od skompletizovania etalónu spustené podľa

Obr. 75: Detail osadenej dosky napájania.

možností nepretržite, aby sme boli schopní zachytiť a zdokumentovať starnutie referenčných obvodov, ktoré môže trvať aj niekoľko mesiacov.

Obr. 76: Schéma pripojenia Arduino NANO k mikroprocesoru ATMEGA328P pre účely zavádzania programového vybavenia do etalónu.

Obr. 77: Zložený zásuvný modul bez bočných stien.

Obr. 78: Zobrazenie v režime analýzy Fluke 8588A.

Obr. 79: Prvé zapnutie skompletizovanej referencie.

Obr. 80: Prvé zapnutie finálnej verzie na ÚE FEI STU.

6 Metrologická charakterizácia etalónu

Metrologická charakterizácia predstavuje overenie požadovaných, vopred špecifikovaných parametrov etalónu napätia. Meranie jednotlivých parametrov etalónu zároveň poskytuje používateľovi lepšiu predstavu o vzťahu hodnoty napätia etalónu, voči skutočnej hodnote napätia. Skutočnú hodnotu napätia v tomto prípade predstavuje nadradený etalón, pričom sa v ideálnom prípade snažíme naviazať naše výsledky až k primárnemu etalónu vo forme Josephsonovho poľa. Bližšie informácie k nadväznosti referenčných zariadení sme popísali v kapitole 1.1.5. Všetky merané parametre boli vykonávané pre 10 V výstup etalónu. Vo finálnej kapitole diplomovej práce *6.6 Kalibrácia absolútnej hodnoty napätia etalónu* sú charakterizované aj výstupy 1 V a 0,1 V.

6.1 Časová stabilita

Etalón bol skompletovaný a prvý krát zapnutý 26.2.2024 v laboratóriu B309 na Ústave elektrotechniky FEI STU v Bratislave. Od vtedy je nepretržite v prevádzke. Počas všetkých meraní časovej stability sme využívali čerstvo kalibrovaný, referenčný mnohomer [32] Fluke 8588A s nastavením na rozsah 10 V, rozlíšenie 8,5 platných miest, integračný čas 10 sekúnd (500 NPLC).

Etalón je stále vo fáze počiatočného starnutia. K celkovému driftu výstupného napätia prispieva starnutie referenčného čipu ADR1000, starnutie jednotlivých súčiastok, ale aj mechanické napätia na spojoch, ktoré sa postupne uvoľňujú.

Keďže sme kvôli nevyhovujúcim podmienkam a chýbajúcemu vybaveniu neboli schopní vykonať všetky merania na jednom mieste, bol etalón premiestňovaný medzi niekoľkými laboratóriami. Pre účely merania teplotnej závislosti a presnej charakterizácie časovej stability, bol etalón presunutý do laboratória elektrických veličín Slovenskej legálnej metrológie (obr. 82), kde boli merania vykonávané v riadenom prostredí so známymi hodnotami teploty, vlhkosti a tlaku:

- priemerná teplota: 23,1 $^{\circ}\mathrm{C}$
- priemerná vlhkosť: 46,7 %
- Tlak: 1012,2 hPa

Obr. 81: Etalón v laboratóriu B309 na Ústave Elektrotechniky, FEI STU Bratislava. Obr. 82: Etalón v laboratóriu elektrických veličín, SLM Bratislava.

V grafe na obrázku 83 sú tieto merania znázornené červenou a zelenou farbou. Zvyšné merania boli vykonávané v neriadenom prostredí v laboratóriu B309 na FEI (obr. 81) a v Dúbravskom metrologickom inštitúte.

Ak porovnáme priebeh úvodného usadzovania $\Delta M \Delta 733A$ (obr. 83) s priebehom starnutia referencie ADR1000 z katalógového listu (obr. 22), môžeme si všimnúť, na rozdiel od monotónneho poklesu v dátovom liste sa naša referencia usadzuje inak. V prvých dvoch týždňoch vidíme rýchly pokles o -5ppm, ktorý sa ukončil po veľkom teplotnom cykle v klimatickej komore kde bol celý etalón vystavený teplote do 50°C. Nasledujúce dva týždne je výstupné napätie pomerne stabilné a potom začína pozvoľne stúpať približne 0,5 ppm/týždeň. Po desiatich týždňoch od spustenia sa trend ustaľuje.

Výstupné napätie neovplyvňuje len samotná referencia ADR1000, ale aj všetky prispôsobovacie obvody, ktoré do výsledného priebehu prispievajú vlastným driftom. Domnievame sa, že sa postupne uvoľňujú mechanické napätia v spájkovaných spojoch a doske plošného spoja.

Po priblížení je v grafoch veľmi dobre vidieť aj náhodné, veľmi rýchle skoky s amplitúdou v ráde 1 ppm. Detail je v grafoch na obrázku 84. Ide o uvoľňovanie defektov v samotnom čipe

referencie, jav popísaný Pickeringom [26].

Obr. 83: Ustaľovanie výstupného napätia referencie od prvého zapnutia.

Obr. 84: Priebeh ustaľovania a občasné náhodné skoky výstupného napätia na úrovni zlomku $\mu V/V$.

6.2 Teplotná stabilita

Informácia o zmene napätia v závislosti od teploty je dôležitá pre špecifikáciu teplotného rozsahu, v ktorom je možné etalón prevádzkovať pri zachovaní požadovanej hodnoty výstup-

ného napätia. Okrem metrologickej funkcie, nám test poslúžil aj na overenie funkcie termostatu, ktorý vyhrieva referenčnú časť etalónu. Na meranie teplotnej stability sme potrebovali umiestniť etalón do zariadenia alebo prostredia, v ktorom sme schopní nastaviť a udržovať teplotu, prípadne aj vlhkosť a tlak podľa potreby. Pre tento účel sme použili teplotnú komoru Weiss WK3-180/40 v SLM. Komora umožňuje nastavenie programu pre dlhodobé meranie na rôznych teplotách. V našom prípade sme nastavili celkovo 7 hodnôt teploty (10 °C, 15 °C, 23 °C, 30 °C, 35 °C, 40 °C, 45 °C), z ktorých každá trvala 8 hodín (viď červená krivka v obrázku 87).

Obr. 85: Principiálna schéma pre meranie teplotnej stability.

Nastavenie merania je znázornené na obrázkoch 85 a 86, kde je etalón napätia vložený do teplotnej komory, ktorej teplotu dodatočne overujeme pripojením kalibrovaného referenčného teplomera Almemo 2590-4AS. Referenčné napätie je z výstupu 10 V vyvedené pomocou meracích káblov von z teplotnej komory do referenčného mnohomeru Fluke 8588A, ktorý je nastavený v rovnakom režime ako pri meraní časovej stability v kapitole 6.1.

Obr. 86: Meranie teplotnej stability etalónu v laboratóriu SLM. Vľavo referenčné teplomery, v pravo referenčný mnohomer.

Na grafe v obrázku 87 je zobrazený zmeraný priebeh výstupného napätia etalónu v závislosti od nastavenej teploty v komore.

Pri teplote nad 40 °C došlo k výraznejšiemu poklesu napätia, čo je pravdepodobne spôsobené výpadkom PI regulátora vyhrievania. Meranie bolo vykonávané počas víkendu bez ľudského dohľadu a rovnako neboli počas merania zbierané ani hodnoty parametrov regulátora, čo znamená, že okolnosti a príčiny výpadku nie sú zdokumentované ani potvrdené. Možnou príčinou výpadku PI regulátora je prekročenie nastavenej teploty vyhrievania 45 °C. Regulátor bol navrhnutý len pre vyhrievanie, nedokáže chladiť.

Ďalšia výraznejšia zmena nastala zhruba pri teplote 10°C. V tomto prípade je pravdepodobné, že regulátor nebol schopný dodávať dostatočný výkon pre vyhrievanie termostatu na nominálnu teplotu. Pri ďalších testoch, kde sme etalón vystavili teplotám nižším ako 10 °C alebo vyšším ako 45 °C, sme však opätovný výpadok regulátora nezaznamenali.

Obr. 87: Teplotná stabilita 10 V výstupu etalónu napätia.

Pre rozsah teplôt v rozmedzí 15 °C až 40 °C sme dosiahli zmenu výstupného napätia približne $0.028 \,\mu V/V$ na jeden stupeň celzia, čo je vynikajúci výsledok. Môžeme deklarovať, že pracovná teplota etalónu by sa mala pohybovať v tomto rozsahu.

6.3 Stabilita výstupného napätia v porovnaní s Fluke 732C-S

Doposiaľ boli merania stability nášho etalónu vztiahnuté voči referenčnému mnohomeru Fluke 8588A. Pre doplnenie predstavy o stabilite nášho zariadenia sme vykonali ešte doplňujúce meranie - porovnanie s kalibrovaným etalónom napätia. Pre tento účel sme využili etalón napätia Fluke 732C-S z laboratória elektrických veličín SLM, ktorý je naviazaný na Josephsonov etalón napätia z Českého metrologického inštitútu (viď obrázok 88). Technické parametre vrátane nadväznosti Fluke 732C-S sú popísané v tabuľke 2.

Na obrázku 89 je schéma zapojenia, kde sú etalóny zapojené antisériovo voči sebe. Pre meranie rozdielového napätia sa obyčajne používa prepínacia matica s nízkym termoelektrickým napätím a nanovoltmeter. My sme použili zjednodušené zapojenie, rozdiel napätí sme merali len pri jednej polarite a použili sme Fluke 8588A na najcitlivejšom rozsahu 100 mV. Väčšina nastavení Fluke 8588A bola zachovaná z predchádzajúcich meraní (kapitola 6.1).

Výsledky kalibrace:

Kalibrovaný etalon byl přijat v zapnutém stavu, napájený externím zdrojem. Indikátor INCAL nesvítil. Uvedené hodnoty jsou vypočteny jako průměr hodnot naměřených pomocí automatického měřícího systému během sledovaného období. Hodnoty jsou vztaženy ke střednímu datu **25. 12. 2023** a odporu interního teplotního čidla (**39.49 ± 0.02**) k Ω .

Výstup	Zjištěná hodnota (V)	Nejistota měření (µV)			
0.1 V	0.100 004 69	0.10			
1 V	1.000 049 11	0.10			
10 V	10.000 007 30	0.60			

Drifty napětí vypočtené pro období 2019 – 2024 jsou: $(0.042 \pm 0.031) \mu$ V/rok pro výstup 0.1 V, (-0.456 +- 0.031) μ V/rok pro výstup 1 V a (-5.31 +- 0.18) μ V/rok pro výstup 10 V.

Standardní nejistota měření byla určena v souladu s dokumentem JCGM 100:2008. Uvedená rozšířená nejistota měření je součinem standardní nejistoty měření a koeficientu k, který odpovídá pravděpodobnosti pokrytí přibližně 95 %, což pro normální rozdělení odpovídá koeficientu rozšíření k = 2.

Obr. 88: Výňatok z kalibračného listu etalónu Fluke 732C-S z Českého metrologického inštitútu. Plný protokol je v prílohe 6.6.

Obr. 89: Schéma zapojenia pre meranie stability $\Delta M \Delta 733A$ voči etalónu Fluke 732C-S.

Obr. 90: Porovnávanie etalónu voči Fluke 732C-S.

Graf na obrázku 91 zobrazuje nameraný rozdiel napätia v horizonte 7 dní. Ak nás zaujíma stabilita nášho etalónu, absolútna hodnota rozdielu napätí oboch zdrojov ($\Delta M\Delta 733A$ a Fluke 832C-S) v tomto prípade nie je dôležitá. Výsledkom merania je informácia o stabilite nášho etalónu, voči známej stabilite nadradeného etalónu Fluke 732C-S. Samozrejme aj hodnota výstupného napätia Fluke 732C-S s časom "driftuje"($-5,31 \mu V/rok$, viď. obr. 88), čo znamená, že rozdiel v grafe 91, reprezentuje sumu nestabilít oboch zariadení súčasne. Ak by sme chceli zmerať drift len samotného etalónu $\Delta M\Delta 733A$ a vylúčiť príspevok meracej aparatúry, bolo by nutné jeho výstupné napätie porovnávať s viacerými referenciami, alebo využiť Josephsonov etalón napätia.

Výsledok merania za 7 dní je na obrázku 91 (funkcia času) a na obrázku 92 ako Allanova odchýlka. Ak vezmeme do úvahy strednú hodnotu (bez šumu), drift predstavuje približne $2 \mu V$, so šumom cca. $4 \mu V$. V relatívnej mierke $0.2 \mu V/V$ resp. $0.4 \mu V/V$ čo považujeme za vynikajúci výsledok. Meranie prebehlo na konci prvého mesiaca prevádzky, kedy sa etalón ešte stále ustáľoval. Správne by sme merania mali započítať aj príspevok driftu mnohomeru 8588A, keďže sme merali absolútny rozdiel napätí (90 day accuracy), a neprepínali striedavo medzi prednými a zadnými svorkami (transfer accuracy).

Obr. 91: Časový priebeh hodnoty rozdielu napätí nášho etalónu a Fluke 732C-S.

Obr. 92: Allanova odchýlka hodnoty rozdielu napätí nášho etalónu a Fluke 732C-S.

6.4 Opakovateľ nosť výstupného napätia po teplotnom cykle

Dôležitým indikátorom kvality etalónu napätia je opakovateľnosť hodnoty po úplnom napájacom/teplotnom cykle. V ideálnom prípade by po vypnutí a vychladnutí etalónu, a následnom znovu-zapnutí malo byť výstupné napätie presne rovnaké ako pred vypnutím. Tento parameter sa tiež nazýva hysteréza. V grafe na obr. 93 vľavo je vynesená hodnota výstupného napätia z posledného merania (21.4.2024) pred vypnutím etalónu. Po dvoch mesiacoch od skompletovania a uvedenia do prevádzky bol etalón 24.4. vôbec prvý krát vypnutý za účelom vykonania testu opakovateľnosti.

Etalón bol vypnutý na 2-3 hodiny, následne zapnutý na 2-3 hodiny a toto sa opakovalo 4 krát. Priebeh napätia po znovu zapnutí a zahriatí je vynesený v grafe na obr. 93 vpravo. Pre úplnosť plánujeme ešte zopakovať rovnaký test s dlhším intervalom vypnutia (niekoľko dní), výsledky ale budú k dispozícii až po odovzdaní tejto práce.

Obr. 93: Opakovateľnosť výstupného napätia po štyroch úplných teplotných a napájacích cykloch.

6.5 Šum

Správna charakterizácia šumu je obzvlášť dôležitá pri veľmi presných aplikáciách akou je aj etalón napätia. Šum superponovaný na ideálnu hodnotu referenčného napätia predstavuje hlavný príspevok neistoty typu A. Šumové charakteristiky systému sú obyčajne reprezentované parametrom šumová spektrálna hustota v režime špičkového napätia, vyjadrenou v jednotke V/\sqrt{Hz} . V režime výkonu, ktorý sa nazýva výkonová spektrálna hustota sa vyjadruje v V^2/\sqrt{Hz} . Pri etalóne napätia sme použili prvý prípad, pričom šumovú spektrálnu hustotu v zaužívanej štandardnej šírke pásma 0,1 Hz až 10 Hz.

Šumové vlastnosti nášho etalónu sme porovnali s inými referenciami napätia od profesionálnych firiem aj doma vyrobenej jednotky. Na meranie šumu $\Delta M \Delta 733A$ sme použili striedavo viazaný, batériovo napájaný, nízkošumový zosilňovač LFLNA-80 [33], so ziskom 80 dB a osciloskop Rohde Schwarz RTB2004 s rozlíšením 10 bitov. Zosilňovač LFLNA-80 má elektronicky obmedzenú šírku pásma na 0,1 Hz až 10 Hz a jednosmerné napätie na vstupe sa kompenzuje pomocou aktívnej servo slučky. Meranie prebehlo v laboratóriu B309 na ÚE FEI STU.

Merania zvyšných etalónov (obr. 94) boli realizované doc. Danielom Valúchom v laboratóriu elektrickej metrológie v CERNe pomocou rovnakého nízkošumového zosilňovača LFLNA-80 a 8 kanálového, 12 bitového osciloskopu LeCroy HDO8108.

Dĺžka záznamu osciloskopu bola pri všetkých meraniach určená na 200, alebo 240 sekúnd.

Obr. 94: Meranie šumu rôznych typov etalónov napätia v laboratóriu elektrickej metrológie CERN. V strede na stole je zosilňovač LFLNA-80.

V grafe na obrázku 95 sú zobrazené šumové charakteristiky všetkých porovnávaných etalónov napätia aj s legendou. *IREF3* je model ultra nízkošumového etalónu 10V/10mA vyvinutý firmou Metron Designs špeciálne pre CERN, ktorý taktiež využíva referenčný čip ADR1000. Pre potreby charakterizácie meracích reťazcov prúdu pre High Luminosity LHC nestačí ani špeciálne vyvinutá nízkošumová verzia IREF3, je dokonca potrebné využiť stochastické vlastnosti šumu a pri kalibrácii sa používa 5 jednotiek zapojených paralelne. Keďže boli IREF3 k dispozícii v laboratóriu, okrem merania jedného etalónu IREF3 sme merali aj šum všetkých deviatich dostupných paralelne pripojených jednotiek. Krivka *old PBC* znázorňuje šumovú charakteristiku predchádzajúcej verzie etalónu IREF2 rovnako vyvinutú firmou Metron Designs s referenčným čipom LTZ1000. Krivka *ADR1000 reference DV* je etalón napätia vyvinutý doc. Valúchom, využívajúci ADR1000 a podobné súčiastky ako $\Delta M \Delta 733A$ avšak s rozdielnou metódou úpravy výstupného napätia využívajúcou rezistorovú sieť a Kelvin-Varleyho deličom napätia. Etalóny Fluke 732A a 732B sú z laboratória elektrickej metrológie v CERNe. Červená prerušovaná čiara reprezentuje údaje získané z katalógového listu ADR1000, škálované na 10 V. Pre overenie šumového pozadia meracej aparatúry bol odmeraný aj šum samotného zosilňovača LFLNA-80 s vyskratovaným vstupom v kombinácii s číslicovým osciloskopom.

Obr. 95: Šumová spektrálna hustota zrealizovaného etalónu a porovnanie s inými etalónmi napätia.

V porovnaní všetkých etalónov sa z hľadiska šumovej spektrálnej hustoty ukázal ako najhorší práve $\Delta M \Delta 733$ A, ktorý vykazoval vyšší šum hlavne v pásme vyššom ako 1 Hz. Jedným z dôvodov môže byť aj fakt, že bol etalón $\Delta M \Delta 733$ A meraný pomocou menej kvalitného osciloskopu v tepelne neriadenom laboratóriu B309 na FEI, čo by však stále nemalo spôsobovať veľký rozdiel oproti ostatným meraniam. Pre identifikáciu príčin šumu a overenie správnosti merania v prípade $\Delta M \Delta 733$ A, je potrebné vykonať ďalšie merania. V ideálnom prípade s použitím rovnakého meracieho reťazca a rovnakých podmienok ako pri ostatných etalónoch.

6.6 Kalibrácia absolútnej hodnoty napätia etalónu

Zrealizovaný etalón napätia $\Delta M \Delta 733A$ sme od prvého uvedenia do prevádzky 26.2.2023 nepretržite merali a monitorovali jeho dôležité parametre. Pri tom sme zozbierali značné množstvo dát z rôznych prístrojov. Vzhľadom na použitie profesionálnej meracej techniky na profesionálnych pracoviskách vieme z nameraných údajov získať aj informáciu, ktorá pôvodne nebola predmetom nášho primárneho záujmu.

Referenčný etalón Fluke 732C-S bol kalibrovaný 25.12.2023 (3 mesiace pred meraním). Referenčný mnohomer Fluke 8588A bol vyrobený v januári 2024 a kalibrovaný 19.1.2024 (2 mesiace pred meraním). Máme teda k dispozícii dva čerstvo kalibrované prístroje. Z čistej experimentátorskej zvedavosti sa pokúsime vykonať neakreditovanú kalibráciu absolútnej hodnoty napätia nášho etalónu.

Z kalibračného listu Fluke 732C-S (obrázok 88) odčítame výstupné napätie (k=2)

$$U_{732Ckal} = 10,000\ 007\ 30\ V \pm 0,60\ \mu V \tag{38}$$

Drift výstupného napätia

$$\Delta = -5,31 \pm 0,18 \ \mu V/rok \tag{39}$$

Výstupné napätie etalónu Fluke 732C-S počas merania v 14. týždni po kalibrácii

$$U_{732CS} = U_{732Ckal} + \Delta \times \frac{14}{52} = 10,000\ 007\ 30\ V \pm 0,60\ \mu V - 1,43\ \mu V$$

= 10,000\ 005\ 87\ V \pm 0,60\ \mu V (40)

Výber zo špecifikácie referenčného mnohomeru Fluke 8588A je na obrázku 96. Merania prebiehali v časovom okne 2-3 mesiace po kalibrácii, používame teda špecifikáciu 90 dní, teplotu môžeme považovať Tcal $\pm 1^{\circ}C$.

Napätie nášho etalónu merané Fluke 8588A na rozsahu 10 V (2262 vzoriek)

$$\overline{U} = 9,999\ 947\ 97\ V$$
 (41)

Neistota typu A

$$u_A = \sigma = 1,12 \ \mu V \tag{42}$$

DC Voltage ^{[1][2][3][4]} DC Voltage maximum resolution is 8 digits

Total Measurement Specification = (Reading spec + Range spec) + (Aperture spec + Aperture Range spec) + (Read Period Reading spec + Read Period Range spec) Reading and Range Specification

Aperture	≥ 100	μs
----------	-------	----

			Relative Accuracy				Absolute Accuracy			
95 % Confidence			\pm (μ V/V of reading + μ V/V of range)							
Range	Zin	Full Scale	Transfer, 20 min ^[15]	24 Hour Tcal ± 1 °C	90 day Tcal ± 1 °C	365 day Tcal ± 1 °C	2 years Tcal ± 1 °C	365 day Tcal ± 1 °C	365 day Tcal ± 5 °C	2 year Tcal ± 5 °C
100 mV	Auto, 10 MΩ, 1 MΩ	202.000 000 mv	0.2 + 2.0	0.7 + 2.0	1.4 + 2.0	2.7 + 2.0	5.4 + 2.0	5.1 + 2.0	7.5 + 2.0	15 + 2.0
1 V	Auto, 10 MΩ, 1 MΩ	2.02 000 00 mv	0.06 + 0.3	0.5 + 0.3	1.4 + 0.3	2.7 + 0.3	5.4 + 0.3	2.8 + 0.3	2.9 + 0.3	5.8 + 0.3
10 V	Auto, 10 MΩ, 1 MΩ	20.200 000 0 V	0.05 + 0.05	0.5 + 0.05	1.4 + 0.05	2.7 + 0.05	5.4 + 0.05	2.8 + 0.05	2.9 + 0.05	5.8 + 0.05
100 V	Auto, 10 MΩ	202.000 000 V	0.4 + 0.3	1.0 + 0.3	2.6 + 0.3	4.0 + 0.3	8.0 + 0.3	4.1 + 0.3	4.3 + 0.3	8.5 + 0.3
100 V	1 MΩ	202.000 000 V	2.0 + 5.0	2.0 + 5.0	4.5 + 5.0	9.0 + 5.0	18 + 5.0	9.0 + 5.0	9.5 + 5.0	19 + 5.0
1000 V	Auto, 10 MΩ	1050.000 00 V	0.4 + 0.5	1.0 + 0.5	2.6 + 0.5	4.0 + 0.5	8.0 + 0.5	4.3 + 0.5	4.4 + 0.5	8.9 + 0.5
1000 V	1 MΩ	1050.000 00 V	4.0 + 25	4.0 + 25	4.5 + 25	9.0 + 25	18 + 25	9.1 + 25	9.6 + 25	19.2 + 25

Obr. 96: Špecifikácia referenčného mnohomeru Fluke 8588A pre rozsah jednosmerné napätie, k = 2.

Neistota typu B (zo špecifikácie 8588A, k=2)

$$2 \times u_B = 1, 4.10^{-6} \times hodnota + 0, 05.10^{-6} \times rozsah =$$

= 1, 40.10⁻⁶ × 9, 999 947 97 V + 0, 05.10⁻⁶ × 20 V =
= 15, 00 \mu V
$$u_B = 7, 50 \ \mu V$$
 (43)

Výsledná neistota merania rozšírená koeficientom k=2

$$u = k \times \sqrt{u_A^2 + u_B^2} = 2 \times \sqrt{1, 12^2 + 7, 50^2} = 15, 17 \ \mu V$$
(44)

Hodnota výstupného napätia získaná priamym meraním kalibrovaným 8588A je teda:

$$U_{mnohomerom} = 9,999\ 947\ 97\ V \pm 15,17\ \mu V \tag{45}$$

Druhá metóda merania je pomocou porovnania s kalibrovaným etalónom napätia Fluke 732C-S s použitím neoptimálneho voltmetra 8588A, namiesto riadneho nanovoltmetra, ktorý sa používa na tieto aplikácie. Rozdiel napätia nášho etalónu a etalónu 732C-S sme merali 8588A na rozsahu 100 mV (7 dní, 59391 vzoriek)

$$\overline{U} = 73,587 \ \mu V \tag{46}$$

Neistota typu A

$$u_A = \sigma = 0,735 \ \mu V \tag{47}$$
Neistota typu B (zo špecifikácie 8588A, k=2)

$$2 \times u_{B} = 1, 4.10^{-6} \times hodnota + 2, 0.10^{-6} \times rozsah =$$

= 1, 40.10⁻⁶ × 73, 587 µV + 2, 0.10⁻⁶ × 0, 200 V =
= 0, 40 µV
$$u_{B} = 0, 20 \mu V$$
 (48)

Výsledná neistota merania rozšírená koeficientom k=2

$$u = k \times \sqrt{u_A^2 + u_B^2} = 2 \times \sqrt{0,74^2 + 0.20^2} = 1,52 \ \mu V$$
(49)

Rozdiel napätia nášho etalónu a etalónu 732C-S je

$$U_{rozdiel} = 73,587 \ \mu V \pm 1,52 \ \mu V \tag{50}$$

Hodnota napätia získaná priamym porovnaním

$$U_{porovnanim} = U_{732CS} - U_{rozdiel} =$$

$$= 10,000\ 005\ 87\ V - 73,587\ \mu V = 9,999\ 932\ 28\ V$$
(51)

A celková neistota merania porovnaním rozšírená koeficientom k=2

$$u = 2 \times \sqrt{0,30^2 + 0,77^2} = 1,63 \ \mu V \tag{52}$$

Hodnota výstupného napätia vrátane neistoty merania získaná priamym porovnaním s etalónom 732C-S teda je

$$U_{porovnanim} = 9,999\ 932\ 28\ V \pm 1,63\ \mu V \tag{53}$$

Pomocou dvoch nezávislých meraní sme získali dve hodnoty výstupného napätia nášho etalónu:

$$U_{mnohomerom} = 9,999\ 947\ 97\ V \pm 15,17\ \mu V$$
$$U_{porovnanim} = 9,999\ 932\ 28\ V \pm 1,63\ \mu V$$

Pre lepšiu orientáciu sú obidve hodnoty znázornené aj v grafe na obrázku 97. Z veľkosti vypočítanej neistoty merania v obidvoch prípadoch je zrejmé, že metóda s použitím nanovoltmetra a meraním rozdielu dvoch blízkych napätí poskytuje presnejšie výsledky.

Obr. 97: Kalibrácia bez okrúhlej pečiatky - porovnanie merania hodnoty výstupného napätia dvoma metódami, k = 2.

Výstupy 1 V a 0,1 V sme merali len priamo s 8588A. Napätie nášho etalónu na rozsahu 1 V (3198 vzoriek)

$$\overline{U} = 1,000\ 150\ 63\ V$$
 (54)

Neistota typu A

$$u_A = \sigma = 0,19 \ \mu V \tag{55}$$

Neistota typu B (zo špecifikácie 8588A, k=2)

$$2 \times u_{B} = 1, 4.10^{-6} \times hodnota + 0, 3.10^{-6} \times rozsah =$$

= 1, 40.10⁻⁶ × 1, 000 150 63 V + 0, 3.10⁻⁶ × 2 V =
= 2, 00 \mu V
$$u_{B} = 1, 00 \ \mu V$$
 (56)

Výsledná neistota merania rozšírená koeficientom k=2

$$u = k \times \sqrt{u_A^2 + u_B^2} = 2 \times \sqrt{0, 19^2 + 1, 00^2} = 2,04 \ \mu V$$
(57)

Hodnota výstupného napätia 1 V získaná priamym meraním kalibrovaným multimetrom 8588A je:

$$U_{1V} = 1,000\ 150\ 63\ V \pm 2,04\ \mu V \tag{58}$$

A finálne, napätie nášho etalónu na rozsahu 0,1 V (2945 vzoriek)

$$\overline{U} = 0,100\ 030\ 051\ V \tag{59}$$

Neistota typu A

$$u_A = \sigma = 0,043 \ \mu V \tag{60}$$

Neistota typu B (zo špecifikácie 8588A, k=2)

$$2 \times u_{B} = 1, 4.10^{-6} \times hodnota + 2, 0.10^{-6} \times rozsah =$$

= 1, 40.10⁻⁶ × 0, 100 030 05 µV + 2, 0.10⁻⁶ × 0, 200 V =
= 0, 54 µV
$$u_{B} = 0, 27 \mu V$$
 (61)

Výsledná neistota merania rozšírená koeficientom k $\!=\!2$

$$u = k \times \sqrt{u_A^2 + u_B^2} = 2 \times \sqrt{0,04^2 + 0,27^2} = 0,55 \ \mu V$$
(62)

Hodnota výstupného napätia 1 V získaná priamym meraním kalibrovaným mnohomerom 8588A je:

$$U_{0,1V} = 0,100\ 030\ 05\ V \pm 0,55\ \mu V \tag{63}$$

Záver

Cieľom našej práce bolo navrhnúť a vyrobiť etalón napätia pre Ústav elektrotechniky FEI STU v Bratislave, založený na báze Zenerovej referencie, s použitím čipu ADR1000. Práca sa zaoberá detailným popisom návrhu, výroby, testovania a metrologickej charakterizácie etalónu.

V úvodnom oboznámení sa s riešenou problematikou sme predstavili technológiu a základné princípy, ktoré je nutné poznať pre praktický návrh zariadenia. Následne sme stanovili koncepciu, špecifikáciu parametrov a navrhli blokové schémy. Na základe konceptu sme pristúpili k rozhodovaniu o použití konkrétnych princípov a súčastí, ktoré budú dostačujúce pre naplnenie požadovanej špecifikácie. Pre účely realizácie sme vytvorili niekoľko simulácií v programoch LTspice, Python alebo MATLAB Simulink pre potvrdenie vypočítaných parametrov.

Osadenie a testovanie prvého prototypu sme vykonávali v laboratóriu skupiny vysokofrekvenčných systémov CERN v Ženeve. V rámci úvodných testov funkčnosti prototypu sme narazili na niekoľko problémov, ktoré boli zdokumentované, vyriešené a opätovne otestované priamo na mieste. Následne sme riešenia implementovali do novej verzie etalónu.

V rámci vývoja a neskôr dolaďovania prototypov a výslednej realizácie sme mali príležitosť spolupracovať a konzultovať s kolegami z rôznych pracovísk. Priamo v CERNe sme konzultovali návrh číslicového PI regulátora so Samuelom Kacejom, expertom v oblasti teórie riadenia. Priebeh predpokladanej časovej stability etalónu vrátane návrhov dôležitých meracích postupov sme konzultovali s Nikolajom Beevom z oddelenia elektrickej metrológie CERN. Veľmi solídny základ pre teoretický úvod a interpretáciu výsledkov meraní nám poskytol aj príspevok Dr. Luisa Palafoxa z národného metrologického inštitútu PTB v rámci konferencie *High performance digitizer and DC metrology meeting* na FEI STU. V spolupráci so Slovenskou legálnou metrológiou nám boli poskytnuté priestory a profesionálne vybavenie pre niektoré kľúčové merania. Kontakty, diskusie a úzka spolupráca s expertami na široký rozsah problematiky nám umožnili veľmi rýchlo sa učiť dôležité veci a navrhnúť a zrealizovať naozaj špičkové zariadenie.

Významnú časť práce predstavovala metrologická charakterizácia zrealizovaného etalónu. Táto činnosť si vyžaduje štúdium meracích techník, oboznámenie sa so špičkovou meracou technikou a osvojenie si prístupu a pracovných postupov používaných v metrologických laboratóriách. Sú to veci, s ktorými sme sa nemali možnosť stretnúť počas štúdia.

Z hľadiska dosiahnutých výsledkov môžeme konštatovať, že sme navrhli a zrealizovali kompletné, funkčné zariadenie metrologickej kvality. Etalón je spustený od 26.2.2024. Referenčný čip ADR1000 spolu s ostatnými precíznymi obvodmi sa stále nachádza v stave úvodnej stabi-

97

lizácie a starnutia a budeme ho naďalej pravidelne merať. Doposiaľ získané údaje naznačujú, že sa nám podarí dosiahnuť požadovanú stabilitu výstupného napätia výstupu 10,000 000 V na úrovni $5\mu V/V/rok$, skôr lepšiu.

Teplotná stabilita etalónu je excelentná, v rámci pracovného rozsahu teplôt 15 až 40 °C sme dosiahli teplotný koeficient napätia $-0,028\mu V/V/^{\circ}$ C.

Šumová charakteristika dosahuje v porovnaní s profesionálnymi etalónmi horšie hodnoty, čo by bolo možné vylepšiť použitím iných operačných zosilňovačov a odporových sietí. Pri realizácií sme sa sústredili primárne na stabilitu výstupného napätia, šumové vlastnosti neboli priorita.

V rámci neoficiálnej kalibrácie sa nám pomocou porovnania s kalibrovaným etalónom Fluke 732C-S podarilo naviazať nami vytvorený etalón $\Delta M \Delta$ 733A na Josephsonov napäťový etalón v ČMI, vrátane výpočtu neistôt popísaných v kapitole 6.6.

Z pedagogického hľadiska sme sa naučili, že pri návrhu presnej elektroniky sú dôležité všetky detaily, ktoré na prvý pohľad nesúvisia s elektronickou časťou návrhu ako sú napríklad mechanické pnutia na doske plošných spojov v časti precíznych obvodov umiestnených v termostate, ktoré bude nutné v budúcej verzii upraviť. Zároveň sme sa nielen v CERNe naučili rýchlo a efektívne identifikovať technické problémy a s pomocou dostupného materiálneho vybavenia laboratória a konzultanta ich rovnako rýchlo a efektívne odstrániť a zdokumentovať.

Celkovým pedagogickým prínosom je vytvorenie návykov k systematickej práci na náročnom projekte, podrobná dokumentácia každodennej práce a meraní, ako aj následné spracovanie a prezentácia výsledkov, ktoré sa odrážajú od medzinárodných príručiek a definícií.

98

Zoznam použitej literatúry

- Linear Technology Corporation (dnes Analog Devices, Inc.), LTZ1000/LTZ1000A Ultra Precision Reference, 1987. PRINTED IN USA.
- [2] P. MILLER and D. MOORE, "Precision voltage references." https://www.ti.com/lit/ an/slyt183/slyt183.pdf. Accessed: 2024-03-05.
- [3] Analog Devices, Inc., Ultralow Noise, LDO XFET Voltage References with Current Sink and Source, ADR44x, 2005.
- [4] J. KOHLMANN and R. BEHR, Development of Josephson voltage standards. Superconductivity - Theory and Applications. 2011.
- [5] A. RUFENACHT et al, "Impact of the latest generation of josephson voltage standards in ac and dc electric metrology," 2018 Metrologia 55 S152, 2018.
- [6] Fluke Corporation, Calibration: Philosophy in Practice, Second Edition. 1994. ISBN: 0-9638650-0-5.
- [7] L. PALAFOX, "Voltage references, voltage standards and josephson voltage standards," in *High performance digitizer and DC metrology meeting*, (Bratislava, SK), PTB, Február 2024.
- [8] Analog Devices, Inc., ADR1000: Oven-Compensated, Buried Zener, 6.62 V Voltage Reference Data Sheet (REV B.), 2022.
- [9] LINEAR TECHNOLOGY CORPORATION, LTC1591/LTC1597: 16-Bit Parallel Low Glitch Multiplying DAC with 4-Quadrant Resistors Data Sheet, 1998. LT 0715 REV B.
- [10] J. GUST, "Calibration standards: Definition and different levels explained." https://us.flukecal.com/literature/articles-and-education/ general-calibration-metrology-topics/video/calibration-standards-d. Accessed: 2024-03-09.
- [11] NIST, "Si units electric current." https://www.nist.gov/pml/owm/ si-units-electric-current. Accessed: 2024-03-09.

- [12] P. HOROWITZ and W. HILL, The Art of Electronics 3rd edition. Cambridge University Press, 2015.
- [13] W. J. HAMER, Standard Cells, Their Construction, Maintenance, and Characteristics. National Bureau of Standards Monograph 84, 15.01.1965.
- [14] Electric units and standards No. 59. Circular of the National Bureau of Standards.Washington, D.C.: USA Government Printing Office, 25.09.1916.
- [15] Intersil, 4.096V Radiation Hardened Ultra Low Noise, Precision Voltage Reference, Oct 5, 2023. FN8634 Rev.2.01.
- [16] NIST, "Programmable josephson voltage standards and arbitrary waveform synthesizers." https://www.nist.gov/noac/technology/current-and-voltage/ programmable-josephson-voltage-standards-and-arbitrary-waveform. Vytvorené:, Aktualizované: 18.5.2023.
- [17] V. GERGINOV and G. HOTH, "Nist's cesium fountain atomic clocks." https: //www.nist.gov/pml/time-and-frequency-division/time-realization/ cesium-fountain-atomic-clocks. Vytvorené: 26.8.2009, Aktualizované: 12.5.2023.
- [18] PTB, "Josephson effects and josephson voltage standards division 2." https://www. ptb.de/cms/en/ptb/fachabteilungen/abt2/abt2-josephson.html. Vytvorené: 20.12.2019, Aktualizované: 8.5.2023.
- [19] C. J. BURROUGHS, *1 Volt DC Programmable Josephson Voltage Standard*. IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 9, No. 2, 06. 2022.
- [20] W.J. Riley, NIST Special Publication 1065, Handbook of Frequency Stability Analysis. Júl 2008.
- [21] J. HALLON, "Návrh meracích systémov: Prednáška č. 11 neistoty merania." 2022.
- [22] J. R. Pickering, "Method and apparatus for conditioning an electronic component having a characteristic subject to variation with temperature. us patent 5369245." https:// patents.google.com/patent/US5369245A/en. 1991.
- [23] V. foil resistors a VPG brand, "Ultra high precision z foil though-hole resistor with tcr of ± 0.2 ppm/°c, tolerance of ± 0.005

- [24] H. B.V., "A 1-100 build-up resistor for the calibration of standard resistors," J. Sci. Instrum. 31 450, 1954.
- [25] C. R. HOFFMAN, "An easy to build 0.1x and 0.01x resistive divider: B. v. hamon's clever trick." https://conradhoffman.com/HamonResistor.html. 6.5.2010.
- [26] John R PICKERING and Paul ROBERTS, "Setting new standards for dc voltage maintenance systems: A solid state dc reference system,"
- [27] Maxim Integrated, MAX1873: Simple Current-Limited Switch-Mode Li+ Charger Controller Data Sheet (Rev.0), 2001. 19-2099; Rev 0; 7/01.
- [28] MAX8211-MAX8212: Microprocessor Voltage Monitors with Programmable Voltage Detection Data Sheet (Rev.6).
- [29] LINEAR TECHNOLOGY CORPORATION, LT3439: Slew Rate Controlled Ultralow Noise 1A Isolated DC/DC Transformer Driver Data Sheet.
- [30] LINEAR TECHNOLOGY CORPORATION, LT3045: 20V, 500mA, Ultralow Noise, Ultrahigh PSRR Linear Regulator Data Sheet (Rev.D), 2022. Rev. D.
- [31] B. ADAMCZYK, Foundations of Electromagnetic Compatibility with Practical Applications. 2017. Wiley.
- [32] J. SUKUBA, "O budovaní prirodzenej pojmovej základne." http://efton.sk/AP/ annales2ed2.pdf. Annales Patroniensis, vol. I Nr. 2.
- [33] E. Precision, "Lflna-80: Low-frequency low-noise amplifier 80 db." https://eulerprecision.com/product/ low-frequency-low-noise-amplifier-lflna-80/. 5.5.2024.

Príloha č.1 - Výrobné podklady dosky referencie

Board Stack Report						
Stack Up			Layer Stack			
Layer	Board Layer Stack	Name	Material	Thickne ss	Constant	
1		Top Paste				
2		Top Overlay				
3		Top Solder	SM-001	0.025mm	4	
4		Top Layer	Copper	0.035mm		
5		Dielectric 2	PP-006	0.500mm	4.1	
6		Mid Layer 1	Copper	0.035mm		
7		Dielectric 1	FR-4	0.500mm	4.8	
8		Mid Layer 2	Copper	0.035mm		
9		Dielectric 3	PP-006	0.500mm	4.1	
10		Bottom Layer	Copper	0.035mm		
11		Bottom Solder	SM-001	0.025mm	4	
12		Bottom Overlay				
13		Bottom Paste				
	Height : 1.691mm					

Comment	Designator	Quantity	Footprint
47n/50V-X7R	C1, C2, C3, C4, C5	5	C_0805
33p/50V-X7R	C6	1	C 0805
	C7 C8 C13 C22 C23		
	$C_{1}, C_{2}, C_{1}, C_{2}, $	10	C 0905
10/50V-X/R	024, 025, 027, 029,	12	C_0805
	C30, C34, C38		
	C9, C12, C14, C17,	7	C 0905
4./U/30V-A/R	C33, C39, C42	1	0_0005
	C10 C11 C15 C16		
10u/50V-X7R	C10, C11, C13, C10, C10, C10, C10, C10, C10, C10, C10	8	C_1206
	636, 637, 640, 641		_
100/50\/	C19	1	D_Class_Case_(Tantal
100/300	010	· ·	um_Capacitor)
	C19 C26 C31 C32		
100n/50V-X7R	C43 C46	6	C_0805
		0	0.0005
22p/25v-X/R	C20, C21	2	C_0805
0.1u/50V-X7R	C28	1	C_0805
10u/50V-X7R	C35	1	C 0805
1N4148WS	D1. D2. D3	3	SOD323
			Aluminium Case foot
Aluminium_Case	H1	1	nrint
			print
Plastic Case	H2	1	Plastic Case footprint
	1 12	· ·	
	IC1, IC2, IC3, IC4.		
ADA4522-2		6	20-8
			11.00
		1	
L13045	IC6, IC8, IC17	3	MSOP12
LTC1597	IC7	1	SSOP-28
LTC2410	IC9	1	SSOP-16
MAY5216	1012	1	
IVIAV.0210		1	
FOD8163	IC13, IC15	2	SOIC6W
ATMEGA328P	IC14	1	TQFP-32
LT3094	IC16	1	MSOP12-EP
MSTBVA25/4-G-508	.11	1	MSTBVA 2 5/ 4-G-5 08
10101/12,0/ 4 0 0,00		· · · · ·	
MSTBVA 2,5/2-G-5,08	J2	1	IVISIBVA_2,5_2-G-5,06-
_ / /			Footprint-1
	n	4	MSTBVA2,5_5-G-5,08-
INSIBVA2,5/ 5-G-5,08	3	1	Footprint-1
100k	R1 R76	2	R 0805
10		2	D 0905
10	rz, r4	2	R_0000
100	R3	1	R_0805
01	R5, R11, R61, R62,	0	D 0905
ZK	R63, R64, R65, R66	0	N_0000
	R6 R7 R67 R69 R70		
22k	D71	6	R_0805
0.54			D 0005
0R1	R8, R16	2	R_0805
	R9, R10, R13, R14,		
1k	R15, R51, R53, R68,	9	R 0805
	R74		_
100 ZEoil		1	7001 Eoil Dogistor
120-21-011		1	
330k	R17	1	R_0805
150k	R18, R72	2	R_0805
51k	R19, R73	2	R_0805
	R20 R21 R22 R23		
221		6	R_0805
5 11	D04 D05	^	D 090F
0.1K	r24, r20	2	CU0U_7
3.3	R26, R27, R39, R40	4	R_0805
	R30, R31, R32, R33,		
	R34, R35, R36, R37,		
33k	R43 R44 R45 R46	16	R_0603
	R47, R40, R49, R00		D 0007
0R	R38, R54	2	R_0805
10k	R41, R58	2	R_0805
360	R42	1	R_0805
270	R52	1	R 0805
6.8k	R55	4	 R 0805
0.0K		1	T_0000
λ	HOO, HO7, HO9, HOO	4	K_0805
220k	R75	1	R_0805
510	R78, R79	2	R 0805
10K	RN1, RN2, RN3	3	
		J	90.16
		1	
B57045K0103K000	KI1, KI2	2	B57045K_footprint
	<u>ସ</u> ଫ		GDH08S04-Footprint-
GUNU0304	51, 3 2	2	1
MMBF43921	T1 T3	2	SOT23 3
	יי, יי מד	4	
		1	3UI23_3
IH-530PBF	14, 15, 16, 17	4	10-220AB
Din Hoader 512	VC1		PinHeader_3x2_male_f
		1	ootprint
8 MHz	XTAI 1	1	HC-49/US
···· ·-		· · · ·	

Príloha č.2 - Výrobné podklady dosky napájania

Board Stack Report					
Stack Up			Layer Stack		
Layer	Board Layer Stack	Name	Material	Thickne ss	Constant
1		Top Paste			
2		Top Overlay			
3		Top Solder	SM-001	0.025mm	4
4		Top Layer	Copper	0.035mm	
5		Dielectric 2	PP-006	0.500mm	4.1
6		Mid Layer 1	Copper	0.035mm	
7		Dielectric 1	FR-4	0.500mm	4.8
8		Mid Layer 2	Copper	0.035mm	
9		Dielectric 3	PP-006	0.500mm	4.1
10		Bottom Layer	Copper	0.035mm	
11		Bottom Solder	SM-001	0.025mm	4
12		Bottom Overlay			
13		Bottom Paste			
	Height : 1.691mm				

Comment	Designator	Quantity	Footprint	
0.01u/50V-X7R	C3, C5	2	C_0805	
0.068R/1%	R2	1	R <u>2</u> 512	
0.1u/50V-X7R	C11	1	C_0805	
0.22u/50V-X7R	C2, C4	2	C_0805	
1k	R17, R18, R23	3	R_0805	
1M	R22	1	R_0805	
1n/50V-X7R	C12	1	C_0805	
1u/50V-X7R	C7	1	C_0805	
1.5M	R20	1	R_0805	
2.2u/50V-X7R	C1	1	C_0805	
3k9	R12, R16	2	R_0805	
4.7/1%	R1, R3	2	R 0805	
4.7u/50V-X7R	C3+	1	C 0805	
09_06_148_692100	J2	1	09_06_148_692100_fo otprint	
10k	R4, R8	2	R_0805	
10u	L1	1	CDH115NP100MC	
15k	R9	1	R 0805	
	C15, C16, C17, C18,			
22u/35V-X7R	C20, C21, C22, C23,	12	C 2220	
	C24, C25, C26, C27			
33k	R10, R11, R14, R15	4	R 0805	
47n/50V-X7R	C8, C10	2	 C 0805	
47u/25V	C6, C30	2		
68u/25V	C9, C31	2	D_Class_Case_(Tantal um_Capacitor)	
100k/1%	R6 R7	2	R 0805	
150k	R13		R 0805	
200m	R5	1	R 2512	
330p/50V-X7R	C13 C14	2	C 0805	
390k	R21, R27	2	R 0805	
1042P	BT1 BT2 BT3	3	BAT 1042P	
BSS123	IC4. IC5. IC8	3	SOT23 3	
		-	Hectrolityc Capacitor-	
Bectrolytic Capacitor	C19, C28	2	Footprint-1	
Fuse	F1	1	00318211	
LT3439	IC2. IC3	2	TSSOP-16-EP	
MAX1873SEEE+	IC1	1	SOP64P602X175-16N	
MAX8212ESA+	IC6	1	SOIC127P600X175-8N	
	D2, D3, D4, D5, D6,		MSS1P5 M3 89A-	
MSS1P5_N3/89A	D7, D8, D9	8	Footprint-1	
MSTBVA2,5/2-G-5.08	Д	1	MSTBVA2,5/2-G-5.08	
MSTBVA2,5/ 4-G-5,08	ß	1	MSTBVA2,5/ 4-G-5,08	
MSTBVA2,5/5-G-5,08	J1	1	MSTBVA2,5_5-G-5,08- Footprint_1	
SI4435DDY	0.01))	<u>90-8</u>	
Transformer	1R1, 1R2	2	Tranformer-Footprint-	
V3-IVIBR334U-IVI3_9A1	ועבן, או און אין אין אין אין אין	3	DIOIVI/9097202IN	

Príloha č.3 - Výrobné podklady vyhrievacej krabičky

Príloha č.4 - Program mikrokontroléra

```
#include <SPI.h>
int spi_speed = 100000;
const int ADC_csPin = 10; //ADC Chip Select pin
const int DAC_csPin = 9; //DAC Chip Select pin
const int DAC_clrPin = 8; //DAC clear pin
float V_ref = 5.0;
                        //DAC reference voltage
uint16_t DAC_voltage = 0; //binary code to be send to DAC
float P_max = 12.0;
                         //maximum power
//PI controller variables
int conversionTime = 200;
float integral = 0.0, integral_prev = 0.0;
float proportional = 0.0;
//float Ki = 0.001619;
//float Ki = 0.0001;
float Ki = 0.00014;
//float Kp = 0.655;
//float Kp = 0.655;
float Kp = 20.0;
float error = 0.0;
float set_point = 45.0;
float current_value = 0.0;
float reg_out = 0.0;
float dt = 0.2;
const float threshold = 0.5; // hodnota pri ktorej zacne svietit ledka error = setpoint - current value
const int LEDPin = 6; // PD6 pin
void setup() {
  Serial.begin(9600);
  SPI.begin();
 initConverters();
 pinMode(LEDPin, OUTPUT);
}
void loop() {
  controlRoutine();
 int32_t rawData = ReadADC();
 double Voltage = double(rawData)/double(16777216)*double(V_ref);
  current_value = calculateTemperature(Voltage);
 PI_controller();
  if (reg_out >= 12.0) {DAC_voltage = 0xFFFF;}
 else if (reg_out < 0.0) {DAC_voltage = 0x0000;}</pre>
  else {DAC_voltage = uint16_t(reg_out / P_max * 65535);}
  setVoltage(DAC_voltage);
  float time_passed = millis();
  Serial.print(time_passed);
  Serial.print(",");
  Serial.print(current_value, 2);
 Serial.print(",");
 Serial.print(error,4);
  Serial.print(",");
  Serial.print(integral, 2);
  Serial.print(",");
  Serial.print(proportional, 2);
Serial.print(",");
 Serial.println(reg_out, 2);
 delay(200);
}
//====
```

```
{
 pinMode(DAC_csPin,OUTPUT);
                                 //PB1 resp. D9 - CS_DAC
 digitalWrite(DAC_csPin,HIGH);
                                 //nastavenie CS_DAC na High - nezapisuje
  pinMode(DAC_clrPin, OUTPUT);
                                  //DAC clear pin to output
  digitalWrite(DAC_clrPin, HIGH); //DAC clear pin to high
                                 //PB2 resp. D10 - CS ADC
  pinMode(ADC_csPin,OUTPUT);
  digitalWrite(ADC_csPin,HIGH);
                                 // nastavenie CS_ADC na High - nezapisuje
  //init DAC (power up) – zrejme nie je potrebne
  SPI.beginTransaction(SPISettings(100000, MSBFIRST, SPI_MODE2));
  digitalWrite(DAC_csPin, LOW);
  delayMicroseconds(1);
  SPI.transfer(0x80);
  SPI.transfer(0x00);
  SPI.transfer(0x00);
 digitalWrite(DAC_csPin, HIGH);
  SPI.endTransaction();
}
void controlRoutine()
{
  if (Serial.available())
  {
   char input_char = Serial.read();
    Serial.println(input_char);
    if (input_char == 'A')
    {
     Ki = 0.00001;
      //Ki = 0.0;
     Kp = 0.655;
      reg_out = 0.0;
      integral_prev = 0.0;
      integral = 0.0;
      Serial.println("prijate A");
   }
   else if (input_char == 'B')
    {
     Ki = 0.0;
     Kp = 0.0;
     Serial.println("prijate B");
   }
 }
}
int32_t ReadADC()
{
  float ADCraw = 0.0;
  uint8_t byte_0, byte_1, byte_2, byte_3;
                                             //First and second bytes read
  boolean ADCsign, ADCover, ADCunder;
  long ADCcode;
  SPI.beginTransaction(SPISettings(100000, MSBFIRST, SPI_MODE1));
  digitalWrite(ADC_csPin, LOW);
  //write the LTC CS pin low to initiate ADC sample and data transmit
  byte_0 = SPI.transfer(0); // read MSB
  byte_1 = SPI.transfer(0); //
  byte_2 = SPI.transfer(0); //
  byte 3 = SPI.transfer(0); // read LSB
  digitalWrite(ADC csPin, HIGH);
  SPI.endTransaction();
 ADCsign = (byte_0 & B00100000) >> 5; // sign bit 1=pos, 0=neg
        27
             23
                  19
                                 7
  //31
                       15
                            11
  //0051 1111 1111 1111 1111 1111 1110 0000
  //skombinovanie dátových Bitov (5-28)
  //rawData
              23
                  19
                      15
                           11
  //31
        27
                                 7
```

```
byte_3 = byte_3 & B11100000; // clear the 5 LSBs
  byte_0 = byte_0 & B00011111; // clear the 3 MSBs
  ADCcode = (long) byte_3 >> 5;
  ADCcode = ADCcode + ((long) byte_2 << 3);</pre>
  ADCcode = ADCcode + ((long) byte_1 << 11);</pre>
  ADCcode = ADCcode + ((long) byte_0 << 19);</pre>
  if (ADCsign)
  {
    ADCcode = ADCcode;
  }
  else
  {
    ADCcode = ADCcode - 16777216;
  }
  return ADCcode;
}
float calculateTemperature(double Voltage)
{
  float coef_2 = 0.24637976;
  float coef_1 = 9.45960926;
  float coef_0 = 39.62545448;
  float temp=coef_2*Voltage*Voltage + coef_1*Voltage + coef_0;
  return temp;
}
void PI_controller()
{
  //PI_controller();
  error = set_point - current_value;
  proportional = Kp * error;
  integral = Ki * error + integral_prev;
  integral_prev = integral;
  reg_out = proportional + integral;
    if (error <= threshold) {</pre>
    digitalWrite(LEDPin, HIGH); // svici
  } else {
    digitalWrite(LEDPin, LOW); // cma
  }
}
void setVoltage(uint16_t DAC_voltage)
{
  SPI.beginTransaction(SPISettings(100000, MSBFIRST, SPI_MODE2));
  digitalWrite(DAC_csPin, LOW);
  delayMicroseconds(1);
  //POZADOVANE NAPATIE
  uint8_t DAC_voltage_MSB = DAC_voltage >> 8;
  uint8_t DAC_voltage_LSB = DAC_voltage;
  uint8_t byte_0, byte_1, byte_2;
  byte_0 = 0 \times 40;
  byte_0 |= DAC_voltage_MSB >> 2;
  byte_1 = DAC_voltage_MSB >> 2;
  byte_1 |= DAC_voltage_LSB >> 2;
  byte_2 = DAC_voltage_LSB << 6;</pre>
  SPI.transfer(byte_0);
  SPI.transfer(byte_1);
  SPI.transfer(byte_2);
  digitalWrite(DAC_csPin, HIGH);
  SPI.endTransaction();
```

}

Príloha č.5 - Kalibračný protokol použitého etalónu Fluke 732C-S